

AFRL-IF-RS-TR-2003-33
Interim Technical Report
February 2003

DYNAMIC CONTROL AND
FORMAL MODELS OF MULTI-AGENT
INTERACTIONS AND BEHAVIORS

ALPHATECH, Incorporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K542

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-33 has been reviewed and is approved for publication.

APPROVED:
 JAMES M. NAGY

Project Engineer

 FOR THE DIRECTOR:

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2003

3. REPORT TYPE AND DATES COVERED
Interim Jun 00 – Oct 02

4. TITLE AND SUBTITLE
DYNAMIC CONTROL AND FORMAL MODELS OF MULTI-AGENT
INTERACTIONS AND BEHAVIORS

6. AUTHOR(S)
Jeff Coble, Larry Roszman, and Tiffany Frazier

5. FUNDING NUMBERS
C - F30602-00-C-0182
PE - 62301E
PR - TASK
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ALPHATECH, Inc.
3811 North Fairfax Drive, Suite 500
Arlington Virginia 22203

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-33

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James M. Nagy/IFTB/(315) 330-3173/James.Nagy@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
New Multi-Agent System (MAS) approaches to complex DoD problems hold the promise of previously unrealized levels
of autonomy, adaptability, and flexibility of agent-controlled systems. These systems will provide essential capabilities
in command and control, surveillance, automated targeting and weapons delivery, and biochem monitoring.

ALPHATECH’s work has been focused on three areas. First is the development of an Open Experimentation
Framework to facilitate research, evaluation, and characterization of the emerging science of Multi-Agent Systems.
Second is the design and development of the Testbed for Taskable Agent Systems (TTAS), which is a software
environment facilitating experimentation with disparate agent technologies and evaluation of critical design elements of
Multi-Agent Systems. Lastly, our theoretical research developing cooperative methods for machine learning in Multi-
Agent Systems and designing goal-directed agents that make and adapt decisions in a heterogeneous dynamic
environment within a coherent mathematical framework of dynamic programming and Partially Observable Markov
Decision Processes.

15. NUMBER OF PAGES
69

14. SUBJECT TERMS
Multi-Agent Systems, Agent-Based Computing

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

TABLE OF CONTENTS

1 SUMMARY .. 1

1.1 Objectives and Accomplishments.. 1
1.1.1 Open Experimentation Framework (OEF).. 2
1.1.2 Testbed for Taskable Agent Systems (TTAS) .. 3
1.1.3 MAS Research .. 3

2 Introduction... 4

2.1 Needs for Agent Technology .. 4

2.2 Barriers to Deployment of Multi-Agent Systems... 5

2.3 TASK Roadmap.. 6

3 OEF.. 6

3.1 OEF History .. 8
3.1.1 IVRS ... 8
3.1.2 CAHDE... 11

3.2 Design Problems.. 12
3.2.1 The General TASK OEF Design Problem and Experiment 13
3.2.2 The UAV Domain UAV-S (1) Baseline Problem and Experiment 15

3.3 Milestones Achieved and Future Direction .. 22

4 TESTBED FOR TASKABLE AGENT SYSTEMS.. 22

4.1 Overview .. 22

4.2 Technical Description ... 24
4.2.1 Multi-Agent Development Kit.. 25
4.2.2 TTAS main()Method .. 28
4.2.3 TTAS GUI .. 28
4.2.4 TTAS Experiment Simulation Configurer.. 29
4.2.5 TTAS Simulation Component .. 29
4.2.7 Air Vehicles .. 30
4.2.8 Tasks ... 34
4.2.9 The TTAS Simulation Environment Component ... 35
4.2.10 TTAS Umpire Component.. 35

 ii

4.2.11 TTAS Data Recorder .. 35
4.2.12 Two Dimensional View .. 36
4.2.13 The Three Dimensional View... 36

4.3 Milestones and Future Directions.. 37
4.3.1 Milestones ... 37
4.3.2 Future Directions .. 37

5 COOPERATIVE LEARNING AND DYNAMIC CONTROL MAS RESEARCH 37

5.1 Objective .. 39

5.2 Reinforcement Learning .. 39
5.2.1 Cooperative Learning.. 40

5.3 Quality of Knowledge ... 41
5.3.1 Quality Measurement.. 41
5.3.2 Experiment.. 46
5.3.3 Preliminary Analysis... 47

5.4 Continuing Research and Future Direction ... 49
5.4.1 Sequential Decision Problems .. 49
5.4.2 Problem Parameters .. 50
5.4.3 PO-MDP Controller Formulation ... 52
5.4.4 Observations ... 54
5.4.5 Actions .. 57
5.4.6 Policy .. 57

5.5 Conclusions and Continuing Research ... 58

6 PROJECT CONCLUSIONS AND CONTINUING WORK 59

6.1 Open Experimentation Framework .. 59

6.2 Testbed for Taskable Agent Systems .. 60

6.3 Multi-Agent System Research ... 60

7 REFERENCES... 62

 iii

LIST OF FIGURES

Figure 1. Agent characterization and agent behavior models...10
Figure 2. Testbed for Taskable Agent Systems design...26
Figure 3. The Aalaadin agent organization model...27
Figure 4. The MadKit architecture (from Ferber)..28
Figure 5. The basic vehicle reference implementation outline ..33
Figure 6. TTAS' two-dimensional display...36
Figure 7. Interaction between the agent and its environment in a Reinforcement Learning

context..38
Figure 8. Tabular SARSA(λ) online learning and control algorithm40
Figure 9. As the degrees of freedom approach infinity, the T distribution converges to the

Standard Normal curve. ...45
Figure 10. Cooperative SARSA(λ) online learning and control algorithm..........................46
Figure 11. Experiments were conducted on a 10X10 grid environment with two terminal

states, with values 10 and 100 respectively ...46
Figure 12. (a) Convergence of reward and # of steps executed by agent. (b) Attenuation

of e value..47
Figure 13. Certainty measurements for optimal actions, at 100-episode sampling

increments ..48
Figure 14. Measures for all actions at 800th episode..48
Figure 15. Agents navigating through a physical space with known and unknown tasks.

Agents have distinct task surveillance, task detection, agent communication, and
agent detection ranges, respectively illustrated by the four rings surrounding the
agent, starting from the innermost ring..51

Figure 16. A possible PO-MDP controller formulation of a TASK Agent.53
Figure 17. . State transitions reflecting discrimination on the task density within the

agent's area of interest..54
Figure 18. Agents maintain information about the entire environment, but limit decision

making to include information about a limited area of interest.55

 iv

LIST OF TABLES
.

Table 1 The TTAS APIs for Air Vehicles ..30

Table 2. The TTAS APIs for Tasks ..34

Table 3. Source and content of all raw information, from which the agent constructs a set of
observations. ...55

 1

1 Summary
The objective of this effort is to extend the current scientific and mathematical foundations of
agent-based computing by adding rigor to the engineering of agent-based systems and tools in
support of the Taskable Agent Software Kit (TASK) program.

The scope of the research effort is to develop mathematically correct techniques for modeling
and analyzing agent behaviors, agent design methods, and the design of agent creation tools.
Tasks include:

• OEF

− Formulate and coordinate OEF parameters and activities for the TASK program that
capture all key mathematical and theoretical facets of multi-agent systems within the
context of multiple UAVs operating to service multiple tasks.

− Develop models to describe, predict, and evaluate the behaviors of multi-agent
systems (MAS).

• MAS Research

− Extend computer theoretic models of coordination and adaptation to model
autonomous interactive processes. Investigate approaches to incorporate interactive
models of computation into the design and specification of agents and MAS.

− Develop strategies to observe/control behavior of agents and MAS behavior on-line
(i.e. emergent behavior).

• Testbed for Taskable Agent Systems

− Develop a common framework within which the expressive power of a MAS
implementation of a command and control system can be demonstrated

− Develop (large-scale) models of MAS, develop prototypes/models of developed
methods and techniques, and evaluate the viability and effectiveness of these
techniques in modeling, analyzing, observing, and controlling MAS behavior.

1.1 Objectives and Accomplishments
ALPHATECH’s work on the TASK program has included efforts on three distinct tasks: The
development and maintenance of a Research Exploration Framework and evolving it into an
Open Experimentation Framework for all program participants; Design and development of a
Testbed for Taskable Agent Systems, which will serve as a common simulation environment for
evaluation of program research; Research and Development of new agent theories designed to
facilitate coherent behavior in Multi-Agent Systems.

 2

1.1.1 Open Experimentation Framework (OEF)

One of ALPHATECH’s tasks was the development and maintenance of the Control and
Adaptation in Heterogeneous Dynamic Environments (CAHDE) Research Exploration
Framework (REF) for a subset of the Projects in the TASK Program. The CAHDE REF
provides:

• A framework to investigate solutions in dynamic control and adaptation of large-scale
multi-agent system (MAS) behavior,

• A means to analyze agent/multi-agent system designs with respect to their ability to
predict and control emergent behavior, and

• A context in which to demonstrate applicability and utility of multi-disciplinary MAS
research to solve challenging dynamic command and control problems.

The military context of the CAHDE REF is the control and adaptation of autonomous air
vehicles in uncertain, dynamic, heterogeneous, and hostile environments. This includes the
military problems of air traffic control, dynamic resource allocation, sensor grid management,
cooperative control, and self-organizing, self-healing, and self-regulating large-scale systems.
Research foci of the TASK projects within the CAHDE REF are: mathematical underpinnings of
modern computer science, new essential algorithms for key DOD needs, agent designs with
quantifiable performance, and methodologies and tools to design and analyze military C2 MAS.
ALPHATECH’s success with the CAHDE REF has now being transitioned to an Open
Experimentation Framework (OEF), which is serving as a context for the evaluation and analysis
for all agent research conducted in the TASK program.

The Open Experimentation Framework (OEF) is a parameterized problem, solution, and
experiment space that provides a well-defined, standard context in which researchers can apply
dissimilar approaches to the same difficult problem set. Systematic variations to baseline
experiments, which capture aspects of the problems, provide measurements of the solution
parameters achieved by the different research approaches with respect to the problem
parameters. At a minimum, these experimentally derived mappings of problem space to solution
space provide system designers with guidance in the selection of particular implementation
approaches. At a maximum, researchers into Multi-Agent System (MAS) architectures and
designs may notice trends in these mappings that they can exploit for “better” MAS theories.

REF/OEF accomplishments:
• Successfully defined and administered the CAHDE REF and coordinated the participation

and research of multiple project PIs.
• Identified and refined seven major critical elements for MAS research and evaluation
• Developed detailed OEF problem specifications and metrics for Adaptation and Coordination

critical elements
• Defined and specified baseline parameters for the UAV-S(1) surveillance problem.

 3

• Engaged all project PIs on OEF definition, problem specification, and integration of their
research

1.1.2 Testbed for Taskable Agent Systems (TTAS)
The Testbed for Taskable Agent Systems is a simulation of m collaborative, adaptive, and
autonomous agent-driven UAVs that survey and/or search for n ground sites. TTAS
accommodates multiple approaches and implementations to multi-agent autonomy, adaptation,
and collaboration, which can be mixed. It simulates only those features that might significantly
affect Multi-Agent System properties and includes the ability for detailed data collection into a
relational database, three-dimensional physical representation, standard, reproducible
experimental configurations, and limited two- and three- dimensional displays of physical
movement.

TTAS is designed to serve the following purposes:

• Investigate and define UAV kinematics models, task definitions, and standard
experimental conditions of the DARPA TASK OEF

• A standard configuration managed platform on which one can perform standard, well-
defined experiments on different MAS design and implementation approaches

− Systematic, configuration managed variation of problem parameters
− Systematic, configuration managed measurements
− Easily incorporate additional managed variations and measurements particular to

specific Multi-Agent System approaches
• Provide an experimental basis for the comparison of different Multi-Agent System

approaches—particularly with respect to autonomy, adaptation, and coordination—under
a wide range of identical problem conditions

TTAS accomplishments:

• Developed a scaleable, multi-threaded software system with the following features:
− Well defined APIs supporting multiple interactive agents with different underlying

implementations
− Fully 3-dimensional environment
− Six degrees of freedom for UAV motion
− Relational database for extensive experiment data logging
− XML configuration file to adjust the many system parameters

1.1.3 MAS Research
ALPHATECH’s work has been focused on developing agent-based systems that are capable of
adapting to dynamic environments while continuing to execute rational actions. As an agent

 4

encounters the various states of the environment in which it operates, reinforcement learning
(RL) enables the agent to iteratively learn a policy for rational action selection. The continual
nature of reinforcement learning allows the agent to adapt its policy as the environment changes.
In a MAS, the individual agents are working together to achieve a common goal and therefore
must consider each other as part of the environment. The agents must understand how the
behavior of other agents influences their ability to achieve objectives, either explicitly through
interaction or implicitly through observation. ALPHATECH has been working to extend
reinforcement learning theories so that agents can learn to consider their peers as a dynamic
aspect of the environment and to interact effectively to improve the overall system performance.

MAS research accomplishments:

• Conducted extensive research efforts focused on the development of new mechanisms for
coordination and interaction of agents operating in a Multi-Agent System.

• Developed a mechanism for measuring quality of knowledge learned through Reinforcement
Learning

• Conducted experiments to evaluate quality measurement theories and methodology
• Initiated design and development of a Partially Observable Markov Decision Process

framework for an agent controller capable of operating within a multi-agent system
environment.

2 Introduction
The eventual deployment of large-scale networks of cooperative autonomous vehicles offers
tremendous promise for future DoD missions in the following areas.

• Intelligence: UAVs for radar, imaging, and surveillance for military missions abroad
• Targeting: Autonomous UAVS able to cooperatively search, detect, identify, and destroy

targets.
• Homeland security: Ubiquitous monitoring of environments for biological/chemical/nuclear

agents
• Electronic monitoring for COMINT and SIGINT
• Autonomous Robot Teams for search & rescue or hazardous materials cleanup
• Inexpensive, fault tolerant, redundant, massively distributed systems for battlefield command

and control

2.1 Needs for Agent Technology
Advances must be made in mechanisms for control, adaptation, and coordination of Multi-Agent
Systems in order to support complex applications required for the DoD.

Advances in autonomy (Control) will allow heterogeneous units to operate independently (local
goals & missions) and yet cooperate effectively to achieve group goals.

 5

− Problem addressed: flexible, “run-time” distribution of control

− UAV example: new and existing UAVs can be used to achieve critical missions through
regulation of collective behavior without centralized design

Advances in adaptability will provide agents with the ability to recognize and respond to
unanticipated mission and environment dynamics by learning new behaviors

− Problem addressed: system design incompleteness

− UAV example: respond to new threats (e.g. handheld surface-to-air weapons),
environments (e.g. sand storms), missions, objectives

Advances in coordination will allow agents to communicate local information, goals, and intent
to improve group performance.

− Problem addressed: design interoperability

− UAV example: assuring UAVs share the information (situation assessment, goals, etc)
needed to assure achievement of group goals

2.2 Barriers to Deployment of Multi-Agent Systems
Finally, there are several barriers to deploying Multi-Agent Systems applications. These barriers
coincide with the goals of the TASK program.

• Evaluating Multi-Agent System designs: The complexity of Multi-Agent Systems makes
their performance particularly difficult to analyze. Consequently, it is equally difficult to
determine the best system design for a MAS. New methods are needed to determine when a
MAS design is “good” or “better” than another, or even what constitutes “good enough?”
Some of the complexities and open questions are:

• Designs are not against a fixed requirements specification
• Mission needs and environmental dynamics change over time
• What agent designs lead to more effective MAS?

− How to compare and select agent subsystem designs
− Which coordination mechanisms are suitable for specific problem configurations?
− When should agents adapt and how should they adapt?
− How much information should be shared between agents?

• How can emergent behaviors be predicted and controlled?
− Assuring performance in unanticipated circumstances

• How to understand MAS performance boundaries and achieve performance guarantees?
• Automating the design and analysis of agents and MAS

 6

2.3 TASK Roadmap
A key TASK program objective is to ensure the effective employment of multi-agent
technologies into future, critical DoD systems. To do this the TASK program must develop a
scientific base for high-confidence Multi-Agent Systems operating in dynamic environments,
resulting in the following products:

• Agent Design Methodologies: which establish core decision and control mechanisms for
agents and define parameters for effective use.

• MAS Analysis Methodologies: which enable the prediction and control of emergent behavior
in large scale systems.

• Rules of thumb for MAS design to achieve performance guarantees.
• A set of general metrics that can be used to realize effective MAS designs.
• TASK Toolkits: Software tools for the synthesis and analysis of MAS
• Evaluation and transition of technological advances to relevant DoD needs

The first phase of the TASK program (2000-2002) focused on the demonstration of initial multi-
agent system concepts through the application of a particular technology (game dynamics,
control theory, genetic programming, information theory, etc.) to one or more critical elements
of a Multi-Agent Systems (coordination, adaptation, agent construction, etc.) within the context
of one of the three REFs. The second phase of the TASK program (2003-2004) is focused on a
proof-of-concept application of new algorithms and technologies within a single coherent Open
Experimentation Framework consisting of a set of highly DoD relevant UAV surveillance
problems and a multi-agent system design, evaluation, and experimentation methodology. A
third phase of TASK (2004+) might conceivably take the results of the second phase and apply
them to transition-oriented DARPA programs (similar to MICA, FCS and Sense-It) and/or to a
new program involving the autonomous control and coordination of unmanned vehicles in highly
dynamic environments.

3 OEF
The TASK OEF serves as a common problem framework within which multiple researchers can
evaluate different approaches to MAS design and analysis. Of the seven defined critical
elements, Adaptation, Control, Coordination, Uncertainty, Resource Management, Agent
Construction, and Reliability, our initial emphasis is on Adaptation and Coordination. OEF
efforts have been focused on:

• Defining MAS design problems, emphasizing Adaptation and Coordination

− “Baseline problems” - the simplest problem that captures the essential characteristics
of the critical element

 7

− Extended problems have parameters to address robustness, scalability, mission
complexity, uncertainty

• Defining OEF/MAS Challenge Experiments

− “Baseline experiments” for quantitative evaluation of design approaches

− Individual experiments are defined/designed by the individual projects

• Identify and develop metrics to evaluate MAS solutions to the OEF design problems

Adaptation:

We define MAS adaptation as the ability of the MAS to recognize and respond to unexpected
change. New theories must be developed for adaptive distributed control as well as new design
and evaluation methodologies. Without adaptation agents are unable to react effectively to
unanticipated change and the performance of a MAS may degrade unpredictably. Within the
context of the OEF problem, one would expect to see a degraded ability of the UAVs to service
tasks and complete missions as change is introduced, yielding unpredictable mission behavior
and/or performance. Solutions may range from parametric adjustment to evolutionary changes
in the structure of the system (learning). The rate and character of adaptation solutions needed
may differ with the rate and character of change, such as dynamics associated with threats and
tasks, failures and noise, and adversary behavior. Our goal for the OEF has been to develop one
or more design problems (e.g. MAS adaptation problems) that

1) Capture the “essence” of the adaptation problem and, as such, are useful to
algorithm/agent/MAS designers

2) Provide a way to categorize the class of algorithms that can solve the problem

3) Are as simple as possible, yet lead to non-trivial MAS interactions and behavior

4) Tie to the OEF (UAV swarms) and other critical DoD MAS systems

5) Support experiments to evaluate algorithm/technique effectiveness

Coordination:

We define MAS coordination as the propagation of information and local agent action and
reaction to propagated information and remote agent actions. Without coordination, agents
unintentionally waste their efforts and squander resources or fail to accomplish objectives that
require collective effort. Within the OEF context, agents might unnecessarily duplicate servicing
of tasks, tasks could go unserviced, service may not be timely, or resources could be used
inefficiently.

Since the set of MAS coordination strategies may change as environmental uncertainty or
bandwidth changes, the research goals are to identify: the salient design space attributes, the

 8

dimensions in which coordination needs to scale, and metrics for MAS performance with and
without alternate coordination mechanisms.

3.1 OEF History

3.1.1 IVRS
ALPHATECH began the TASK program by creating and managing the Intelligent Vehicle and
Roadway System (IVRS) Research Exploration Framework (REF). IVRS was a problem
designed to entail multiple vehicles controlled by autonomous agents interacting in an
environment.

The essential components of the IVRS were a population of vehicles and a roadway system on
which the vehicles move. Another component of primary importance, but not essential in all
situations of interest, is a distributed population of “traffic signals” with some capability to
regulate the flow of vehicles. Thus, the IVRS represented an example of a system characterized
by the flow of particles through a conduit system, possibly regulated by valves. Systems such as
these are capable of exhibiting microscopic and macroscopic behaviors of interest including
coalition formation, agent-environment interaction, wave phenomena, and other flow patterns.
Moreover, within the IVRS setting we had the freedom to assign a rich set of behaviors,
adaptation laws, and interaction mechanisms to the individual particles and valves (agents).

The IVRS problem supported agent research across the following dimensions:

• Autonomy
− Decisions made by individual vehicles

• Interaction & Communication
− Message passing (nearby agents)

 Negotiation/protocols
− Chalkboard

 Information dissemination

• Vehicle Adaptation & Dynamics
− Obstacle and collision avoidance
− Learning & memory
− Route planning
− Reaction & dynamic replanning
− Attractive & repulsive forces
− Social rules & fairness
− Feedback mechanisms

• Vehicle Goals (self-interest)

 9

− Reach destination
− Minimize elapsed travel time
− Maximize safety
− Maximize travel comfort (relatively constant speed & direction)
− Minimize fuel usage, other costs

• Vehicle Equipment & Performance Specs
− Size (mass, length, width, height)
− Speed / acceleration / deceleration
− Fuel economy & emissions
− Sensors
− Communications

• Heterogeneous Vehicles
− Varying priorities/values for goals
− Varying equipment & performance specs

The IVRS REF also supported the following MAS research areas:

• Collective and Global Goals
− Maximize aggregate throughput
− Maximize aggregate safety
− Minimize aggregate pollution
− Minimize aggregate fuel usage

• Dynamic Environment
− Each individual vehicle encounters a rapidly changing environment

 other vehicles
 transmitted messages
 intersections, curves, & grades
 obstacles & hazards
 equipment failures
 control agents
 rules/laws/protocols
 evolving goals
 evolving aggregate conditions

• Possible Control Agent Features
− Monitoring and dissemination of aggregate data
− Self-motivated to achieve localized collective goals

 control via behavioral mechanisms
 control via supervisory signals

• Emergent Behavior

 10

− Bifurcations, chaos, & phase changes
− Self-organizing characteristics

 coalition formation (e.g., platoons)
 fast & slow lanes

− Flow characteristics & patterns
 laminar vs. turbulent
 steady vs. unsteady
 “slinky effect”

Within the IVRS REF six research groups conducted a wide variety of critical multi-agent
system research including: investigation of decentralized agent control techniques that guarantee
emergent behavior (Dartmouth, “Exit at RFK stadium” problem); construction of traffic signal
agents from Elementary Adaptive Modules in order to improve vehicle flow (MIT/BBN);
investigation of platooning behaviors in non-stationary environments (USC/ISI), investigation of
the effect of different reinforcement learning-based control techniques on emergent behavior
(ALPHATECH), the evolution of transport network agents (Hampshire College) and many other
results.

As part of the establishment of the IVRS REF we developed a framework to characterize agent
subsystems and behavior characterization. The agent behavior characterization recognized a need
to separate the range of agent behaviors into three layers: physical, tactical, and strategic.
Physical level behaviors govern low-level dynamics of the agent (e.g. motion control, collision
avoidance) and are “autonomic” in nature. Strategic level behaviors govern “long-term” goal-
oriented planning for the agent. Tactical level behaviors govern short-term, or tactical, decision-
making to achieve immediate objectives and are the primary focal point of multi-agent system
research.

The agent design subsystems included in the framework are:

Prescribed

Tactical
Physical

Strategic
Layer Basic

Prescribed

Prescribed

Designed

Agent

Designed

External
Model

Internal
Model

On-line
Adaptation

Collaboration

Plan/Goal
Management

Situation
Assessment

2-way com
m

s

Sensors

Actuators

Local
Processing

Figure 1. Agent characterization and agent behavior models.

 11

• Collaboration: governs cooperative and competitive mechanisms toward achieving individual
and common goals.

• Plan and Goal Management: governs dynamic management of goal priorities and plans to
achieve local and common goals.

• Situation Assessment: governs local observation and instantaneous assessment of individual,
group, and environmental state.

• External Model: governs formulation and dynamic updating of external world model
including prediction of external behavior and impact of local decisions.

• Internal Model: governs autonomous actions to achieve individual performance objectives.
• On-line Adaptation: governs dynamic modification of properties and behaviors within pre-

defined constraints in response to assessed situation.

The essential properties and default behaviors of the physical agent characterization serve as a
foundation for constructing the agent characterization. Inputs to the agent subsystems must be
compatible with prescribed low-level sensor capabilities; outputs from the agent subsystems
must be compatible with prescribed actuator capabilities; collaboration mechanisms must be
compatible with prescribed communication capabilities.

3.1.2 CAHDE
The IVRS REF was later transitioned into the Control and Adaptation of Heterogeneous Agents
in Dynamic Environments (CAHDE) REF, which kept many of the interesting aspects of the
IVRS problem, but directed research to a 3D multi-UAV problem, which had more military
relevance.

The CAHDE REF is designed to support research in which vehicle agents compete and/or
collaborate to minimize undesirable emergent behavior, optimize the use of a shared resource,
and attain their individual and/or collective goals. The CAHDE REF problem is M agents
servicing N tasks, such as a team of UAVs gathering intelligence, teams of smart munitions
taking out targets, or the coordinated airlift of supplies. Research goals included enabling
vehicles to adapt to dynamic environments, such as weather and threats, and subsequent
flexibility and adaptation of the MAS, through coordinated action and interaction.

As part of the establishment of the CAHDE REF we refined the agent/MAS characterization
developed during the IVRS REF into the beginnings of a more formal design and analysis
framework. Collectively, the CAHDE REF projects started to enumerate the critical design and
evaluation dimensions of MAS, namely propagation of information, adaptation, coordination,
control, uncertainty, performance guarantees, and local versus global objectives. (This would
later develop into the critical MAS dimensions of the OEF: adaptation, coordination, and
autonomy, plus agent construction). The CADHE REF also began producing a set of
comprehensive metrics for the design and analysis of MAS along with some early prototype
tools.

 12

As with the IVRS REF the seven research groups participating in the CAHDE REF were able to,
separately and collaboratively, conduct a wide variety of critical multi-agent system research
including:

• Improved responsiveness of adaptive MAS relative to non-adaptive MAS through the
recognition of unanticipated situations and response by evolving emergent behaviors.
[MIT/BBN and Hampshire College]

• Methods for reasoning about large-scale agent systems [UIUC]
• Library of Elementary Adaptive Modules and tested structures [MIT/BBN]
• PushPop Evolution components [Hampshire College]
• Metrics for coordination and collaboration as generalized forms of agent-agent

synchronization [SFI]
• Market-based and game-dynamical approaches for decentralized control of large-scale

MAS in dynamic environments [USC/ISI]
• Reinforcement learning and stochastic control agent design [ALPHATECH]
• Distributed algorithms (using artificial potential functions) for 3D airspace control

enabling agents to adapt to their neighbors (and MAS to adapt to their environment)
[Dartmouth]

• And many others

ALPHATECH’s success with the establishment of the CAHDE REF and the integration of the
research of a subset of the program’s PIs was the impetus behind the current OEF, which is an
extension of the CAHDE REF problem. The following sections describe the OEF design
problems in detail.

3.2 Design Problems
Within MAS designs, two major issues always faced by MAS designers are the selection of
coordination and adaptation mechanisms appropriate to the characteristics of the problem at
hand. The long history of computer science research in MAS coordination chronicles many
theories, methodologies, and implementations from which to choose but provides only loose
guidelines for selecting one approach over another. Generally, coordination between
autonomous agents within a MAS is used to complete in some optimal manner a task that is
beyond the capabilities of an individual agent. As such, coordination is closely associated with
team design and spontaneous team formation, many variations of plan creation and execution,
situation monitoring and active re-planning, coordinated behavior responses (in MASs that do
not include an explicit “planning and re-planning” mechanism), and joint-coordinated learning.
Adaptation has nearly as long a history of research but with fewer theories, etc. from which to
choose. MAS adaptation must handle changes to the environment in which the MAS operates,
changes to the MAS itself (such as changes to the number and capabilities of the autonomous
agents), and new MAS-wide tasking. Of course, in MAS design adaptation and coordination are
closely coupled.

 13

Currently, the TASK OEF Adaptation and Coordination MAS Design Problems parameterizes
the problem space with respect to uncertainty, scale, mission complexity, responsiveness, and
reliability and the solution (design) space with respect to adaptation, coordination, and
autonomy1. These parameterizations represent many of the situations in which MAS solutions
are applicable: in particular, many military operations that might employ agents can be
parameterized in this manner. The Design Problems and corresponding Experiments are
specified with respect to baseline values for the problem space parameters. Measurements of
domain dependent quantities, which correspond to the important domain dependent problem
space goals, are carried out in standard testbed simulations. When experiments are conducted
that systematically vary the baseline problem space parameters, the measurements provide
quantified responses of particular Coordination and Adaptation algorithms to different problem
situations.

A major difficulty one faces when specifying experimental MAS Design Problems is to avoid
dominance of the solution space by the details and intricacies of specific details of the domain in
which the problems are posed while retaining the features essential to the MAS characterization
of the domain. Of course, different problem domains, no matter how abstractly stated, will
always emphasize some problem and solution space parameters over others and are likely to
include parameters not noted above. The first step in our approach to design problem and
experiment specification is top-down in which we state as abstractly as possible a general MAS
design problem that isolates as much as possible the essential features of Coordination and
Adaptation. The second step is bottom-up in which we select a problem domain for experiments,
which introduces domain dependent instances of the problem and solution space parameters.

3.2.1 The General TASK OEF Design Problem and Experiment
 The abstract MAS Coordination and Adaptation Design Problem is m autonomous agents, which
can exchange information, detect tasks, and provide some type of service2 to a detected task, that
find and service n tasks. For the baseline design problem and experiments we specify the
following additional constraints:

1. Each task is serviced only once by only one agent
2. Each task has unique identification and location3
3. An agent may know the location of a task
4. An agent may or may not know the locations of all tasks

1 For an approach to the measurement of agent autonomy in Multi-Agent Systems see, K. S. Barber and C. E.
Martin, Agent Autonomy: Specification, Measurement, and Dynamic Adjustment, in Proceedings of the Autonomy
Control Software Workshop at Autonomous Agents 1999 (Agents’99), (Association for Computing Machinery), pp5-
15, 1999.
2 Service, distance, and other such terms are intentionally ambiguous: service ranges from only detection through
determination of the properties of a detected task, doing something to the task, to complete destruction of a detected
task, which, of course, is also ambiguous.
3 The meanings of identity, location, and distance are domain dependent.

 14

5. The mixture of known and unknown tasks ranges from all known to all unknown
6. During an experiment the mixture of know and unknown tasks may remain constant or it

may vary slowly, disruptively (suddenly), or randomly. Note that a Coordination and
Adaptation approach must encompass mixtures of known and unknown tasks, that is, it
should not deal with only all known or all unknown.

7. An agent learns the identification of a task upon detection of the task
8. A task can have either one x1 or two type attributes x1x2, where x1, x2∈{A, B, C, D, F}
9. Detectors are of a single type y, where y∈{A, B, C, D, F}, and can detect only those tasks

that have the same type attribute
10. An agent can have two detectors each of a different type
11. Tasks have values, which an agent can earn for task detection-service
12. Either no communication between agents or only binary agent-to-agent communication,

which is limited to a standard distance2 (communication range) between the two agents.
13. In some experiments, there are range-limited broadcasts by an agent (initially there are

no broadcasts)
Variations from the baseline problem are the subject of later discussions.

The baseline experimental measurements or solution measures are divided into two groups.

Solution Measures: Mission Success

1. The rate at which an agent services tasks
2. The rate at which an agent services previously serviced tasks (serviced by other agents)
3. The length of time before a task is serviced

Solution Measures: MAS Performance

1. The rate4 at which agents communicate
2. The average complexity5 of inter-agent communications
3. The average length6 of inter-agent communications
4. The rate at which an agent consumes computational resources7

Of course, in general additional measurements may be made and are likely to be required in a
particular domain.

In addition to the constraints noted above, additional problem space parameters and ranges,
which a treatment of the OEF baseline Coordination and Adaptation problem should handle and

4 The rate of inter-agent communication is taken to be the number occurrences per unit time
5 The complexity of inter-agent communications is TBD.
6 The length of an inter-agent communication is taken to be the number of four-bit bytes.
7 The definition of computational resources is TBD.

 15

which will be varied from experiment to experiment as well as during experiments, are the
following:

1. The number of tasks and the number of agents
2. Failure, which is the disappearance of one or more agents

The purpose of the TASK OEF baseline design problem as described above is to provide a
defined, well-known standard environment in which the rates achieved by different coordination
and adaptation approaches can be measured. For a particular coordination and adaptation
mechanism, standard systematic variations from the baseline problem parameters (as discussed
above) provide the measures of the specified rates under different problem conditions. MAS
designers can use the experimentally derived mappings between the problem space parameters
and the measured rates to assess the potential performance of specific coordination and
adaptation mechanisms in particular problem environments.

Variations from the baseline Coordination and Adaptation Design problem include the
following:

1. A task of two types, x1x2, must be detected simultaneously by an agent of type x1 and an
agent of type x2

2. Agent-to-agent communications are unreliable
3. The information communicated by an agent may be inaccurate
4. An agent’s detection-service of a task may be inaccurate with respect to location,

identity, and/or type
5. A task may change its location unannounced to the MAS. In this case, the agents can

detect and track task movement
6. A task can detect and track agents and can change its location based upon to this

knowledge
7. A task may need to be detected-serviced on a schedule
8. A task that can detect and track can be a threat, that is, such a task can remove an agent

from the MAS
9. An added task with an unknown location (identity, and type) must be found within a

specified time interval after its addition
These variations, which require domain-specific details, are the basis for addition Coordination
and Adaptation design problems in the Unmanned Aerial Vehicle (UAV) domain.

3.2.2 The UAV Domain UAV-S (1) Baseline Problem and Experiment
Within the military context of the TASK OEF the simplest realization of the general baseline
Coordination and Adaptation Design Problem is a MAS of m autonomous-agent-driven UAVs
and n ground sites. The UAVs are outfitted with sensors and communication gear and the MAS

 16

is ordered 8 to detect and service the ground sites. As discussed more fully below, in the UAV
domain we assume that detectors have an additional attribute (different from the type attribute y)
that can have the value of either surveillance or search. A surveillance detector determines the
identity, type, and precise geo-location of a ground site and has a small field-of-view (FOV). A
search detector determines only that a ground site exists within its FOV, which is significantly
larger than a surveillance detector’s. A search detector performs detection, and a surveillance
detector performs service.

As discussed above the 0th variation of the baseline UAV problem has the following conditions:

1. A constant specified mixture of ground sites with geographic locations known by every
UAV and of ground sites with geo-locations unknown by any UAV

2. The number of UAVs and the number of ground sites remain constant
3. A serviced ground site, after a specified standard interval of time, is replaced by a new

ground site, which has a new and unique identity and location9,10
4. There is to be no duplicate surveillance (servicing) of any site by the same or any other

UAV
5. A site can be found (by the search detector) multiple times by any UAV
6. There are multiple types of UAVs, that is, the MAS is composed of UAVs that have

different flight and performance characteristics11
7. Each detector and each ground site has a single type, which is one of {A, B, C, D, F}
8. Each ground site has a decimal value in the range [0…100]
9. A UAV is aware of all other UAVs that are within a specified distance and is not aware

of those outside this distance
10. A UAV can communicate with only one other UAV at a time
11. Two UAVs can communicate only when they are closer than a specified distance

The experimental measurements are the following:

1. The average rate at which the UAVs service (through the surveillance detector) sites
2. The average rate at which the UAVs service previously detected sites

8 Ordered in the military sense of “You guys go do this now!”
9 The location of a new ground site, which replaces a detected ground site, may be made known to all the UAVs. A
serviced, aged site is removed from the simulation upon replacement in order to keep the landscape from becoming
littered with inactive sites.
10 The continuous replacement of detected, aged sites has three purposes: (1) to avoid experiments dominated by the
initial configuration of the ground sites—the cold start effect, (2) to examine problems that can not be treated,
perhaps more easily, by centralized optimization computations, and (3) to replicate the quasi-real-world environment
where it makes sense to deploy MASs.
11 Purely homogeneous MASs (all UAVs have the same flight and performance characteristics) are included in the
systematic variation of the problem parameters.

 17

3. The time elapsed before a site is first serviced
4. The average rate at which the UAVs detect (through the search detector) sites
5. The average rate at which UAVs communicate
6. The average length of the UAVs’ transmissions
7. [Future: the average complexity of communications]
8. [Future: the average computational resources consumed per UAV]

This fairly simply problem supports a rich array of research into multi-agent systems –

• From handling uncertainty in the environment – e.g. resulting from an agent’s limited
communication and sensor ranges

• To the investigation of coordination strategies under a range of different scenarios – such
as highly bandwidth constrained scenarios and scenarios involving swarms of agents

• From the investigation of different control strategies – such as leader-follower,
hierarchical control, autonomous control, market-based controls, and so on.

• To the investigation of strategies to adapt agent/MAS behaviors to: changes in numbers
of agents, changes in task mix, changes in agent heterogeneity/specialization, etc., and

• From investigating MAS robustness to investigating MAS scalability.

Additional physical characteristics and constraints are required in order to complete a fully
specified experiment that can be reproduced in different implementations of testbeds and
simulators.

1. The physical space for OEF experiments, known as the Area of Interest (AOI), is a ground
surface rectangle 400km per side and unlimited altitude. There are no terrain features such as
mountains, roads, rivers, lakes, etc.

2. A site is a point on and within the AOI ground surface rectangle. A standard coordinate
system12 will not be specified since the geophysical measurements enter in only relative or
difference terms. The distribution of sites within the AOI or at a minimum the
characteristics of the distribution must be repeatable for the experimental measurements
made with different MAS design approaches to be comparable. For OEF surveillance and
search experiments, the site locations must be distributed randomly, continuously, and
uniformly across the AOI rectangle13:

12 One can find definitions for the standard geographic reference systems used by DoD on the National Imagery and
Mapping Agency (NIMA) WWW site http://www.nima.mil. Of particular interest is the Digital Terrain Elevation
Data (DTED standard (MIL-PRF-89020b), which uses the standard World Geodetic System (WGS 84) (MIL-STD-
2401) for horizontal datum and Mean Sea Level (MSL) determined by the 1996 Earth Gravitational Model.
13 With a random continuous uniform distribution we avoid the detailed specification of configurations of site
locations and simplify the generation of new locations after an aged detected site is removed.

 18

{ }
{ }maxmax

maxmax
maxmax

yy 0,y ,xx 0,x0

yy0 ,xx0dxdy
y

1
x

1
dxdy)y,x(P

><><

≤≤≤≤
=

where P(x, y) is the continuous differential probability that a site is located within the
differential dxdy of the point (x, y).

3. The mixture of known and unknown sites is 80% sites whose geo-location is known to all
UAVs and 20% whose geo-location is unknown by all UAVs.

4. The target type (T) of a site is randomly and uniformly selected to be one of (A, B, C, D, F).
5. The value of a site is a real number randomly and uniformly selected from the interval

(0…100).
6. A ground site vanishes 60 seconds after detection.
7. There are always a total of 100 ground sites (detected and undetected) in the AOI.
While we have attempted to remove the major physical details of the high-fidelity UAV search
and surveillance problem, there are some details of both sensor and air vehicle types that must be
examined and included.

The initial surveillance task of the problem—precise detection of known ground sites—and the
later search task of the problem present a slight conundrum. Current Synthetic Aperture Radar
(SAR) in its Spotlight or Spot mode is often used for high accuracy resolution (0.1m to 1.0m)
detection14 from UAVs. The size of the ground patch detected by the Spot SAR is roughly 500m
to 800m in diameter and generally 4km to 25km away on one side of the air vehicle. UAV SAR
in its Stripmap mode, which might be used for search, detects a swath ~1km wide (with
resolution 0.3m to 3.0m) 7km to 30km to the side of the UAV. Ground Moving Target
Indication (GMTI) radar, which is different from the SAR, cuts a swath ~10km wide 4km to
25km to the side of the air vehicle and has a minimum target speed detection of ~3m/s15.

8. As a compromise between retaining essential features and excluding extraneous details, we
take the detection footprint size for the surveillance detector to be a circle with a 300m
diameter directly beneath the UAV, that is, centered on the UAV’s nadir vector. The
surveillance detector detects the unique identity, the precise geo-location, and the type of a
ground site.

9. If a surveillance detector is of a different type than the ground site, the site remains un-
serviced, and the UAV does not accrue the value of the site.

10. A site must remain within the surveillance detector’s footprint or FOV for 10sec to be
serviced

14 Detection is both accurate geolocation determination and target type identification: is it a tank, a rocket launcher, a
Starbucks, etc.
15 Other SAR modes such as Stereoscopic SAR of Digital Elevation Model (DEM) construction and for feature
(building, water tank, road, etc) extraction and Interferometric SAR for terrain change detection are also useful but
will not be considered here. Similarly, optical, infrared, video, and Signal Intelligence (SIGINT) sensors will be
excluded.

 19

11. The instantaneous search detector for static sites is a circle 1000m in diameter also centered
on the air vehicle’s nadir. The search detector can detect only the presence of a site within
its search circle and determine the site’s geo-location to within 6m: it cannot detect the
identity, precise geo-location, or type of the site.

12. The search and surveillance detectors cannot operate simultaneously: the switch from one
detection mode to the other consumes one-half second (0.5sec).

The GMTI specifications are discussed in the Design Problems for Moving Targets section.

Several types of UAVs can be differentiated by flight characteristics. The details of these
different types may influence significantly the performance of various MAS Coordination and
Adaptation approaches. First, there are fixed-winged UAVs, that can not hover, can not ascend
or descend without moving forward at significant speed, and can not turn sharply, and there are
non-fixed-winged UAVs that can hover, can ascend or descend without moving forward, and can
turn sharply. Second, some UAVs are designed to perform long-endurance general missions,
and others are designed to perform short-duration tactical special-purpose missions. Third, some
UAVs operate at high to medium altitude and others at low to medium altitude. Fourth, some
UAVs are large and accommodate multiple sensors, complex navigation devices, and
sophisticated communication packages, while others are small to micro and accommodate one or
two limited capability sensors, rudimentary (but perhaps quite innovative16) navigation, and
limited communications. Fifth, some UAVs are fast and others are slow.

Actual and proposed UAVs encompass nearly all combinations of these characteristics. For
example, the Global Hawk UAV has a fixed wing, operates at high altitudes (~20km) on long-
duration (~35hours with a range of 22,000km) endurance missions, is relatively fast (~180m/s),
and is “large” (35m wingspan and 13m length). The Predator UAV also has a fixed wing,
operates at moderate altitudes (~8km) on short (range ~740km) missions, is slow (cruise speed
~38m/s), and is roughly the same size as the Global Hawk. Of course, the Predator can be
armed. By contrast, the Dragon Eye UAV (used by the Marine Corps for over-the-hill
reconnaissance) can be carried in a backpack (weighs ~2kg) and assembled in the field,
(possibly) operates up to 0.1524km altitude for up to 1 hour at speeds up to 18m/s, and has a
wingspan of 1.143m. It navigates by GPS waypoints (field-in-flight programmed), carries full-
motion color, low-light, and infrared video cameras (not simultaneously), and can transmit line-
of-sight video up to 10km. Current examples of small rotary-winded UAVs are Schiebel
Camcopter (100km range, 6 hour endurance, 25kg payload) and the Yamaha RMAX (10km
range, 90 min flight time, 30kg payload). More exploratory UAVs include DARPA’s Organic
Air Vehicles (OAV), which are small—up to 28 inches diameter—duct-fan VTOL hovering
craft, short-duration, and potential tactical sensor platforms, and Hummingbird Warrior, which is
a medium altitude, long-duration endurance, moderately fast VTOL with a 3700km range.

16 For example see An Ultra Wideband Radar for Micro Air Vehicle Applications by Robert J. Fontana, et al,
available at http://www.multispectral.com/pdf/Advances_Radar.pdf.

 20

For MAS Coordination and Adaptation design and experimentation, we define only two types of
UAVs with respect to flight characteristics: a fixed-wing (UAV Alpha) that corresponds roughly
to the Predator and a VTOL hoverer (UAV Beta) that corresponds roughly to the Fire Scout.
Both of these will operate at medium altitudes and have medium- to long- duration.

Name: UAV Alpha17
Description: Fixed-winged
Minimum Speed:
Maximum Speed: 60 m/s (level flight)
Cruise Speed: 38 m/s (level flight, dwell speed)
Maximum Forward Acceleration:
Maximum Climb Rate:
Maximum Descent Rate:
Minimum Turn Radius: 30 m at 38 m/s 82º bank, 1000 m at 38 m/s 30º bank,

 300 m at 60 m/s 82º bank, 1300 m at 60m/s 30º bank

Maximum Altitude: 7.6 km
Fuel Capacity: 300 kg
Fuel Consumption:
Empty Mass: 715 kg
Fueled Mass: 1,015 kg
Width: 15.0 m (wingspan)
Height: 2.0 m
Length: 8.0 m

Name: UAV Beta18
Description: Non-fixed-winged, VTOL, hover
Minimum Speed:
Maximum Speed: 64 m/s (level flight)
Cruise Speed:
Maximum Forward Acceleration:
Maximum Climb Rate:
Maximum Descent Rate:
Maximum Altitude: 6 km
Fuel Capacity:
Fuel Consumption:
Empty Mass: 72 kg
Fueled Mass:

17 A detailed mathematically specified flight kinematics model for the actual flight dynamics of the fixed-wing UAV
Alpha will be provided.
18 A detailed mathematically specified flight kinematics model for the actual flight dynamics for the non-fixed wing,
VTOL, hover UAV Beta will be provided.

 21

Width: 8.4 m (rotor)
Height: 2.9 m
Length:

• There are, for example, 16 UAVs: 8 of type UAV Alpha and 8 of type UAV Beta
• The maximum UAV-to-UAV communication distance is 3.2 km
• A UAV can determine the presence, heading, and speed of all other UAVs within 6km
The following four problems are natural extensions to the baseline UAV-S(1) problem. Each
problem is designed to stress the MAS solutions in a new way and will be the subject of
coordinated PI research efforts as the research evaluation progresses.

1. UAV-S Problem Class - UAV-S (2) Problem: Cross-Mission Tasking
• UAV-S (2) Problem complexity: Same problem as UAV-S (2), with the following change:
• Tasks are of type x or xx, x ∈ {A…F } (e.g. A, CD, E, AB). XX Tasks must be serviced

simultaneously (within time window [t0,t1]) by different agents with appropriate
capability - e.g. CD task is serviced by AC agent and D agent, or CE agent and AD agent,
but not by a single CD agent.

• UAV-S (2) MAS Objective and Problem Solution Evaluation: Same as UAV-S (1)
2. UAV-S Problem Class - UAV-S (3) Problem: Imperfect Information

• UAV-S (3) Problem complexity: Same problem as UAV-S (2), with the following change:
• Detection and Identification are imperfect. [TBD - parameter specification. Some agents

will be higher fidelity than other agents].
• UAV-S (3) MAS Objective and Problem Solution Evaluation: Same as UAV-S (2)

3. UAV-S Problem Class - UAV-S (4) Problem: Mobile Targets
• UAV-S (4) Problem complexity:
− Fixed number of agents (m) of one type, Fixed number of tasks (n) of one type. Tasks

are uniform in value.
− Each task needs to be visited repeatedly (e.g. to maintain location estimate).
− Detection and identification are accurate. Each task has a unique ID.
− Initial position of task is known, but are subsequently unknown due to mobility.
− Task mobility characteristics may be known (by the agents) or unknown, fixed or

variable (within a task: e.g. go-stop-go), heterogeneous or homogeneous (across the
tasks).

• UAV-S (4) MAS Objective: Maintain position estimate on each target
• UAV-S (4) Problem Solution Evaluation: Measure the resources required by the UAV-S

design problem solutions
4. UAV-S Problem Class - UAV-S (5) Problem: Hybrid Tasking

 22

• Definition TBD

3.3 Milestones Achieved and Future Direction
ALPHATECH’s work in defining and managing the OEF has been successful, measured by a
participatory process that resulted in the definition of a set of baseline problems with detailed
parameters, within which the TASK PIs can cast their work. ALPHATECH has taken
substantial steps to engage PIs in the specification of the OEF, which has resulted in a
specification that is both relevant to military problems and capable of hosting a variety of
research approaches.

Our future OEF work will be oriented around supporting the PI researchers through the
following:

• Developing a parameterized problem generator that will allow the PIs to specify
parameters through a set of menus and will produce a file with a specific problem
configuration consistent with the UAV-S (1) surveillance problem

• Design baseline approaches to baseline problems for research evaluation purposes
• Further definition of the more advanced UAV-S problems
• Continued coordination of PI research within the OEF context

4 Testbed for Taskable Agent Systems

4.1 Overview
The Testbed for Taskable Agent Systems (TTAS) is a simulation platform with which we can
perform experiments on different designs and implementations of Multi-Agent Systems (MASs).
TTAS supports our own research work by providing a mechanism for evaluating disparate agent
designs, operating together as a Multi-Agent System. The inter-agent communication
capabilities provided by TTAS allow us to conduct research in MAS coordination and the
multitude of configurable parameters supports our work on agent adaptation. Additionally,
TTAS provides facilities for capturing and storing detailed experiment data and supports analysis
through repeatable experimentation. TTAS is available to all TASK PI researchers as an
environment for evaluating disparate approaches to agent technology within a common MAS
problem framework. TTAS can be used by all project PIs to test and analyze their particular
approach to coordination or adaptation and then the results can be compared across the TASK
program as a whole. This strategy will provide enormous benefit in terms of the ability to
classify the applicability of various technologies across the dimensions of an entire class of
problems.

Our focus with TTAS is on coordination and adaptation in a MAS of autonomous Unmanned
Aerial Vehicles (UAVs) that search for and survey known, unknown, stationary, and mobile
ground targets (tasks) and that can communicate. TTAS has a set of well-defined Application
Programming Interfaces (APIs) for the UAVs, agents, tasks, agent-to-agent messaging, and data

 23

recording. Any MAS that implements these APIs can execute within TTAS. Agents from
different approaches can execute simultaneous within TTAS and, if they adhere to TTAS’ basic
messaging, can function as a MAS composed of heterogeneous agent designs.

TTAS is fully three dimensional with six full degrees of freedom for UAV motion (three
translational and three rotational about the UAV’s body center) and three-dimensional terrain
location for the ground sites. TTAS uses flight simple kinematics models for UAV motion rather
than full equation of motion flight dynamics models, which is sufficient for OEF experiments.

TTAS uses an XML-based configuration file for data input and to record the conditions of a
repeatable OEF Experiment. The experimenter records the parameters of a simulation
experiment within the configuration file, which TTAS reads, interprets, and execute. These
parameters describe the following:

1. The simulation environment
2. The UAVs
3. The agents that control the UAVs
4. The flight kinematics models of the UAVs
5. The sensor constraints of the UAVs
6. The target ground sites (tasks
7. The agents that controls the ground sites (if any)

The configuration file and how TTAS uses it is described in Section 3.2.

If enabled by the experimenter, data is recorded into a relational database. At execution time the
experimenter can select the specific data and to be recorded and the frequency of recording but
may need to have implemented methods within specific Java classes (the agent, UAV, ground
site, etc) to extract the data encapsulated within the classes. These extraction methods are
defined as part of the TTAS APIs.

The progress of an experiment can be monitored in a two dimensional wizard’s-eye-view that
displays a downward look into the AOI with identification annotating the UAV and ground
target symbols. Also, a fully three dimensional view with user maneuverable viewpoint is
available but currently is of limited utility.

The quantities varied during normal OEF experiments are the following:

1. The number of UAVs
2. The number of target ground sites
3. The ratio of the number of ground sites about which the UAVs know (known tasks)

to the number about which they do not know (unknown tasks)
4. The maximum distance at which one UAV can detect another UAV

 24

5. The maximum distance at which two UAVs can communicate
6. Errors in UAV to UAV communication
7. The size of a sensor footprint
8. The distance at which a sensor can detect a target ground site
9. The accuracy of a sensor
10. The reliability of a sensor

Other quantities such as fuel capacity and communication bandwidth will be added.

Summary quantities measured during normal OEF experiments are the following:

1. The rate at which known ground sites are surveyed once
2. The rate at which known ground sites are surveyed more than once
3. The rate at which unknown ground sites are found
4. The average time interval between the appearance of a known ground site and is

surveillance
5. The average time interval between the appearance of an unknown ground site and is

discovery
Of course, additional quantities can be computed from the recorded data. Experimenter
implemented summary quantities will be added.

4.2 Technical Description
TTAS is built upon the Multi-Agent Development Kit19 (MadKit), designed and implemented by
Jacques Ferber, Olivier Gutknecht, Fabien Michel at Laboratoire d'Informatique, de Robotique et
de Microélectronique de Montpellier (LIRMM). MadKit provides all the basic agent services
that TTAS requires: agent identification, lifecycle, and messaging. We surveyed many platforms
for multi-agent simulations and chose MadKit because (1) it is written in Java, (2) it imposes no
significant restriction on how an agent is designed and implemented, (3) it can be extended
easily, and (4) it has provisions for data gathering. We discuss the aspects of MadKit relevant to
TTAS in Section 3.2.1 and TTAS’s use of MadKit throughout Section 3.2.

TTAS’s design is object-oriented and highly modular. TTAS’ overall design and the design of
its components is performed and maintained in the Unified Modeling Language (UML).
Complex individual component logic is designed and archived with standard flow charts. Unit
testing is used extensively during implementation.

We achieve TTAS’s modularity by exploiting Java’s dynamic class loading and reflection
capabilities. Many of the parameters in the configuration file consist of the complete name of a

19 MadKit is open source software, available under the standard LGPL and GPL licenses, and can be obtained from
http://www.madkit.org.

 25

Java class, such as com.alphatech.TASK.uav.UAVBetaController (in the case of the rotary
winged hoverable air vehicle) and the parameters necessary to created instances of this class,
such as com.alphatech.TASK.basicvehicle.BasicVehicleState,
com.alphatech.TASK.uav.UAVBetaParameters, etc. Others class parameters are simple
numbers, such as the size of the simulation world’s Area of Interest (AOI) or the coordinates of
the initial position, velocity, and direction of a UAV. The Java Virtual Machine (JVM) loads
these Java classes into TTAS at runtime. With runtime class loading the same UAV can be
controlled by agent implementation A in one experimental run and by agent implementation B in
another without any code changes to TTAS or any changes in the experiment’s configuration.
TTAS uses Java reflection to retrieve the constructors and methods of a particular class
appropriate to the types of the particular parameters supplied in the configuration file. Reflection
is necessary since Java constructors and methods can be overloaded. New instances of a class
parameterized with respect to the values of the specified parameters can be created. Calls on the
methods retrieved by reflection can be used to set additional parameters. Also, TTAS uses Java
cloning to create new instances of a class as a deep copy of an existing instance. As will be
discussed below, this method is used extensively to generate new UAVs or target ground sites on
an experimenter-specified schedule.

TTAS’ high level design and major components is depicted schematically in Fig. 2.

TTAS’s components are discussed below.

4.2.1 Multi-Agent Development Kit
MadKit is implemented as a micro-kernel with the services noted above implemented as MadKit
agents that work directly with the micro-kernel. The MadKit micro-kernel is small (50
kilobytes) and can be executed on many Java different platforms (J2SE or J2EE 1.4 and Personal
Java, for example). A developer can extend agent services by add special agents that work with
the micro-kernel directly.

 26

A MadKit based MAS implementation can be executed on a single platform or on multiple
platforms that communicate by standard TCP/IP sockets. Once a MadKit kernel is informed of
the network location and identify of another MadKit kernel, it communicates with the remote
kernel directly and transfers messages from its agents to agents running in the other platform-
kernel combination.

MadKit provides a unique platform dependent identifier for each agent by instances of the
madkit.kernel.AgentAddress class. This identifier is used throughout TTAS and the TTAS
APIs.

TTAS main()

TTAS GUI

Database

load

load

connects
configure

XML
Config

ure
File

TTAS
Configurer

invoke

reads
parse

Three
Dimensional

Display

Two
Dimensional

Display

user

TTAS
Simulation

Elements
Generation
Schedule

create

TTAS
Elements
Generator

use

Air
Vehicles

Tasks

Simulation
Environment

Umpire

Data
Recorder

user

TTAS
simulation

cycles

write

Figure 2. Testbed for Taskable Agent Systems design

 27

MadKit manages the agent lifecycle, which consists of activation, execution, and termination.
Activation, a call to the method activate (of madkit.kernel.AbstractAgent), registers the

TTAS agent with the MadKit micro-kernel. A TTAS agent is a Java extension of the
madkit.kernel.AbstractAgent class. Execution is the agent performing its programmed
activities within the MadKit framework, and termination is the cessation of those activities.

When an agent is activated it is registered as a member of the MadKit community composed of
all agents running in the current mico-kernel-platform combination. Also, it can request to be a
member of a group and can request a particular role in that group. MadKit may reject such
requests since a developer can establish criteria for membership in a group and for playing a role.
The notions of community, groups, and roles arose from Ferber’s research into the structure of
artificial organizations for MASs, the theory of which is named Aalaadin. Fig. 3 (taken from
one of Ferber’s papers) depicts a schematic representation of these notions.

TTAS defines three groups Simulation, Vehicles, and Tasks. The UAVs occupy the role of
AirVehicle in both the Vehicles and Simulation groups. Ground target sites occupy the role of
task in both the Tasks and Simulation groups. Other TTAS simulation specific agents occupy
other roles and will be discussed below.

TTAS uses MadKit’s message capabilities for all agent-to-agent communications. MadKit
defines a set of messages that includes simple text messages, XML messages, Java Object
encapsulating messages, Speech Act Messages, Knowledge Query and Manipulation Language
(KQML) messages, and Agent Communication Language messages. We have extended
MadKit’s basic madkit.kernel.Message to messages appropriate to the TTAS UAV
simulations, such as Launched_AgentI, Kill_Agent, Agent_Killed, Site_Added, etc. With MadKit
messages can be sent to a particular agent (identifier by the madkit.kernel.AgentAddress)
instance, broadcast to all agents that occupy a specific role within a group, or broadcast to all
activated agents.

Figure 3. The Aalaadin agent organization model

is 4
memben

Group

'...(:

Agent
_, ,n 1 . .

Handles

dettned
tor

]. .]i

P.C] f!

 28

MadKit agents can be constructed such that each agent executes asynchronously within its own
thread or such that all agents execute synchronously (sequentially) in a single thread. Our design
uses the synchronous approach (MadKit synchronous engine) so that competition for computing
resources is not a problem. Such competition can occur in the JVM with many (greater that 10)
single threaded simultaneously execution agents, which is the case for OEF coordination and
adaptation design experiments.

4.2.2 TTAS main()Method
As with all Java programs TTAS is invoked from its main method. This method loads the

handler for data recording indicated by the experimenter on the command line, loads the TTAS’
Graphic User Interface (GUI), and places a reference to the data recording handler in the GUI.
As discussed below, even though all data recording takes place through Java Database
Connectivity (JDBC) different vendor’s database may require slightly different invocation and
connection procedures. Loading the data recording handler at run time allows TTAS the
flexibility to handle these situations without re-implementation for each different database.

4.2.3 TTAS GUI
The TTAS GUI is implemented with the Java Swing package. It holds the two- and three-
dimensional display and summary data measurement plots and provides the menus and controls
for the following:

1. Selecting the TTAS configuration file for the experiment
2. Specifying the length of a time step and the duration between time steps (which must be

non-zero to prevent the MadKit threads and the Java Swing execution thread from
coming into conflict)

3. Starting and stopping the simulation experiment run
4. Selecting, hiding, and showing the two- and three-dimension and data displays

Figure 4. The MadKit architecture (from Ferber)

 29

4.2.4 TTAS Experiment Simulation Configurer
After the experimenter selects the particular experiment configuration file TTAS reads and
parses the XML file and through Java dynamic class loading and reflection (as described above)
creates the classes and class instances needed to execute the simulation. All these Java elements
are encapsulated within a data structure, BasicTestBedElementsGenerationSchedule, that is
used by other elements within TTAS. The configurer is designed to handle general Java classes
and instances so that TTAS can be extended to include additional features such as threats or
terrain without re-implementation of this important component.

4.2.5 TTAS Simulation Component
The TTAS simulation component TestBedSimulation, which is extension of the MadKit
synchronous engine class madkit.kernel.Scheduler, provides the connection to the MadKit
micro-kernel necessary for execution of the simulation. The simulation component is a threaded
MadKit agent that is managed by the MadKit micro-kernel but executes within its own thread.
Within TestBedSimulation a loop (a Java while control loop) cycles until stopped by the
experimenter. Within this loop drivers for the groups Vehicles, and Tasks and several other
agents (such as the two- and three-dimension displays) are called during each cycle. A driver is
an extension of the madkit.kernel.Activator and is a part of the MadKit synchronous engine.
Each TTAS MadKit agent that is a member of a particular group (or is to be called by its own
driver) implements a method that will be called at each time step. For the Vehicles group the
method is moveon, for the Tasks group it is update, for the two- and three- dimension displays it
is observe, and so on. The driver for each group (or agent) calls that method for all the agents
of that group. MadKit through Java reflection provides the driver with a reference to every agent
that is currently a member of its group since agents can be created and destroyed or can join and
leave groups as the simulation proceeds. Additionally, the simulation component creates and
joins the TTAS groups (in the role startUp or Scheduler), creates the drivers and registers them
with the MadKit micro-kernel, and creates and launches the TTAS Elements Generator,
Simulation Environment, Umpire, Data Recorder, and two- and three- dimension display
components, which are also MadKit synchronous agents. Refer to Fig. 2 for the simulation
components looping cycle.
4.2.6 The TTAS Elements Generator Component

We have designed TTAS so that agents such as UAVs and target ground sites (tasks) can be
created or destroyed at anytime during the simulation on a regular schedule, randomly, or in
response to requests. The TestBedElementsGenerator class instance that performs this
function is a standard MadKit synchronous agent. At each time step it checks whether it has
received any messages requesting that an agent be created or destroyed and examines data
contained within this experiment’s TestBedElementsGeneratorSchedule class instance
(created by the configurer component as discussed in Section 3.3.4), in order to determine
whether new agents should be launched. If an agent is to be killed, it removes it from the
simulation (only the creator of an agent or the agent itself can destroy an agent). If a new agent
is to be launched, the TestBedElementsGenerator extracts the appropriate class information or
class instance references from the experiment’s TestBedElementsGeneratorSchedule class

 30

instance and uses Java reflection (as discussed previously) to create the agent and launches it into
the simulation.

In response to a single request or schedule time, the TestBedElementsGenerator can generate
an individual agent (a new UAV or task) or multiple agents with randomly selected parameters.
An example of the latter case is the generation of a large number of target ground sites at the
beginning of an experiment simulation run: the geo-locations, the type, and the value 50 to 100
ground sites are generated randomly.

After an agent is launched or destroyed the TestBedElementsGenerator sends messages to
other agents informing them of the event. For example, the two- and three- dimension displays
use these messages to provide graphic representations and annotations. Each UAV agent is
notified when a new known ground site is added and when a completely serviced site is
removed. The data recorder receives all such agent launch and kill messages.

4.2.7 Air Vehicles
An experimenter inserts agent implementations into TTAS through Air Vehicles. We have
defined a set of APIs as Java Interfaces for Air Vehicles in the airvehicle Java Package. The
major Air Vehicles’ API Interfaces and their purposes are listed in Table I. Reference
implementations of some of these Interfaces, which can be used in most OEF MAS simulations,
are part of the basicvehicle Java Package. We designed the Air Vehicles part of TTAS and the
reference implementations to be highly modular. For a particular physical air vehicle, such as a
vertical-takeoff-landing (VTOL) hoverable UAV, only the agent implementation that controls
the air vehicle needs be changed to investigate a different approach to coordination and
adaptation. As discussed above, with respect to TTAS this change is isolated to the modification
of a few lines in the configuration file. Of course, the new agent must implement the Java
Interfaces identified in Table 1. Only Java primitives and classes, MadKit classes, and TTAS
classes are referenced in any of the APIs.

TTAS air vehicles are MadKit agents and must extend the madkit.kernel.AbstractAgent
class as well as implement TTAS’ Vehicle_I interface (and the
madkit.kernel.ReferenceableAgent, which is necessary for the agent to execute within
MadKit’s synchronous engine). Fig. 5 displays schematically the layout of the BasicVehicle
reference implementation. We have designed and implemented a

Interface Name Purpose

Vehicle_I Defines methods TTAS needs to gain access to internal parameters
of an air vehicle. Includes the moveOn method invoked by the
Vehicles driver (Activator) and methods to retrieve references to the
physical state of the vehicle, the environment surrounding the
vehicle, the plan the vehicle is following, and the agent controlling
the vehicle. A Java class for an Air Vehicle (UAV) is a Java

Table 1. The TTAS APIs for Air Vehicles.

 31

extension to MadKit’s AbstractAgent class that implements this
Interface. A reference implementation that can be used by most
MAS is basicvehicle.BasicVehicle.

VehicleState_I The physical state of the Air Vehicle is encapsulated within
implementations of this Interface. The quantities that must be part of
the physical state are a unique identifier object (usually the MadKit
generated AgentAddress instance), the three-dimensional position,
velocity, and acceleration, the simulation elapsed time at which this
state was valid, the three-dimensional orientation of the Air Vehicle
(with respect to vehicle’s center), the current navigational mode, and
an indicator of whether or not the vehicle has undergone a collision.
The reference implementation is basicvehicle.BasicVehicleState.

VehicleAgent_I Defines the TTAS API for the actual agent that is the subject of
research. Implementations are encapsulated within the Air Vehicle,
such as BasicVehicle. Defines the method update that must be
called at each time-step and the parameters that are part of the call.
Also defines a method of retrieving and sending messages since the
Air Vehicle itself is the MadKit agent that receives and sends
messages. No reference implementation.

nullAgent_I An extension to VehicleAgent_I that can be used to handle
autonomic responses, that is, reactions to situations in the
environment that should/can be taken immediately without invoking
the complete intelligence of a full-blown agent. Collision and threat
avoidance and waypoint-based navigation are examples. Intended
to encapsulate quick-response survival and locomotion behaviors. It
is possible to isolate knowledge of the kinematics of the Air Vehicle
necessary for locomotion and navigation here. No reference
implementation.

VehicleParameters_I Defines retrieval methods for the performance parameters of the Air
Vehicle, which are used by the VehicleController_I and may be used
by the nullAgent_I. Includes maximum acceleration, deceleration,
climb rate, descent rate, and speed; minimum and cruise speeds;
mass; dimensions; and type. No reference implementation.

VehicleConstraints_I Defines retrieval methods for sensor and communication distances.
Task (ground site) sensor constraints can depend upon the type
(Java class) of task and the speed of the air vehicle. Maximum
awareness and communications distances to other air vehicles and
the minimum distance allowed between vehicles can depend upon
the relative closing speed. No reference implementation.

VehicleEnvironment_I Defines the methods for accessing the position of other air vehicles
and of tasks consistent with the data encapsulated within the
VehicleConstraints_I implementation and referenced relative to the
current air vehicle of interest. A reference implementation is
basicvehicle.BasicVehicleEnvironment.

VehicleCommand_I Indicates a navigation or service command. Can be issued by the
Agent_I or nullAgent_I implementations. Navigation commands are
interpreted by the VehicleController_I implementation and service
commands by the VehicleService_I implementation. Reference
implementations for acceleration and deceleration, ascent and
descent, and heading changes.

VehicleCommandLoad_I A data structure into which VehicleCommand_I instances can be
placed and retrieved. basicvehicle.BasicCommandLoad is a

 32

reference implementation as a FIFO queue.
VehicleController_I Defines the method update that must be called at each time step to

move the air vehicle. Translates the navigational commands into
simulated physical motion through use of the kinematics model
implemented within it and the parameters of the
VehicleParameters_I implementation. Reference implementations
for fixed wing and for hoverable air vehicles.

VehiclePlan_I If an air vehicle is to follow a pre-generated or real-time generated
plan, the plan must implement this Interface. No reference
implementation, but a test implementation based upon waypoints is
available.

VehiclePlanState_I Intended to capture the current state of the execution of a
VehiclePlan_I. No reference implementation, but a test
implementation based upon waypoints is available.

VehiclePlanManager_I Manages a VehiclePlan_I implementation. No reference
implementation, but a test implementation based upon waypoints is
available.

VehicleService_I An interface for the management of sensors or of a component that
services a task in some manner. No reference implementation, but
several test implementations are available.

VehicleServiceState_I Captures the current state of a sensor or service component. . No
reference implementation, but several test implementations are
available.

VehicleControlsGUI_I If used or enabled provides visual access to at least the physical
state of the air vehicle. Can be used to display the state of the agent
in control of the air vehicle or, with the implementation of controls, to
control the air vehicle and its parameters. No reference
implementation.

VTOL, hoverable air vehicle kinematics model (the OEF UAV-β) for the nullAgent_I and
VehicleController_I APIs within the BasicVehicle implementation. For test purposes, we use
the parameters of the Moller Skycar (http://www.moller.com/skycar/). A primary assumption of
our implementation is that only straight-line (rectilinear) motion occurs during a single time step,
which implies the following:

 Heading changes applied at beginning of time step

 Velocity at end of time step = acceleration × time step length (v = a∆t)

 Position at end of time step = beginning position + velocity at beginning of time step ×
time step length + ½ × acceleration × time step length2 (p(t0 + ∆t) = p(t0) + v∆t + ½ a∆t2)

 33

The nullAgent_I implementation navigates between waypoints (a waypoint is a position, an
optional time, and an optional velocity) where target ground site (tasks) locations are denoted by
waypoints and has several navigation modes (CRUISE_LEVEL_FLIGHT, ASCENDING, DESCENDING,

Message Queue

Agent
Present?

theAgent

nullAgent
Present?

nullAgent

Controller

Agent
GUI

Present?

Agent GUI

Service
Manager
Present?

Service Manager

Plan
Manager
Present?

Plan Manager

update

return

no

yes

no

no

no

no

yes

yes

yes

yes

BasicVehicle

Command
Queue

Command
Queue

Figure 5. The basic vehicle reference implementation outline

 34

ZERO_VELOCITY_Z, ACCELERATING_XY, DECELERATING_XY, ZERO_VELOCITY_XY, STATIONARY,
and DECELERATING_XY_TO_ZERO_VELOCITY_XY).

4.2.8 Tasks
TTAS Java Package job contains the Tasks APIs defined as Java Interfaces. Analogous to Air
Vehicles we created reference implementations for OEFexperiments. The Tasks Interfaces and
purposes are listed in Table 2. The target ground site class of the OEF is

Interface Name Purpose
Task_I Indicates to TTAS that this object is to be treated as a task

within the simulation and provides methods to retrieve the
internal parameters of the task. Defines the method update that
is called at each simulation time step, which is when the
implementation performs computations. No reference
implementation but two test implementations: (1) WaterTank,
which realizes the simple notion of a task with capacity that can
be serviced simultaneously (or sequentially) by multiple agents
and (2) TargetTask, which are the ground sites of the OEF.

TaskState_I Defines methods to retrieve the parameters of the physical state
of the task. The quantities referenced are a unique identifier
(usually the MadKit generated AgentAddress), the three-
dimensional position, the simulation elapsed time at which this
data was valid, an indicator of whether or not the task is
completely serviced, and the simulation elapsed time at which
this task was serviced. job.TaskState is a reference
implementation. WaterTankState and TargetTaskState
correspond to the test implementations described above.

TaskCharacteristics_I Implementations have methods to retrieve parameters that
characterize a task. No reference implementation.
WaterTankCharacteristics specifies capacity, maximum service
rate, and physical dimensions. TargetTaskCharacteristics
specifies the task type (as specified in the OEF one of A…F)
and value.

TaskCharacteristicsRanges_I Implementations provide methods for retrieving the extremes of
the parameters encapsulated within TaskCharacteristics_I
implementations. Used by the TestBedElementsGenerator to
generate random values for these parameters.

Connector_I Defines methods for a servicing agent to connect to a task. No
reference implementation. WaterHose is the connector for the
WaterTankTask.. (The WaterPump service manager in an air
vehicle connects to a WaterTank through the WaterHose, for
example.

TaskServiceCommand_I Indicates that the class should be interpreted as a command
that concerns servicing a task. No reference implementation.

Table 2. The TTAS APIs for Tasks.

 35

an extension of the madkit.kernel.AbstractAgent class and an implementation of the
job.Task_I and madkit.kernel.ReferenceableAgent interfaces.

4.2.9 The TTAS Simulation Environment Component
The TTAS Simulation Environment component, nullAgent.util.EnvironmentObserver,
updates each Air Vehicle’s knowledge of its locale (the VehicleEnvironment_I
implementation such as the BasicVehicleEnvironment reference implementation) consistent
with the constraints encapsulated within the VehicleConstraints_I implementation.
EnvironmentObserver is an extension to the MadKit class madkit.kernel.Watcher that was
references to registered madkit.kernel.Probe instances, which hold references to all the MadKit
agents of a specific group and role. For example, EnvironmentObserver retrieves the positions
and velocities of each Air Vehicle, checks which are within the maximum visibility constrains to
the Air Vehicle whose locale is being updated, and performs the transformations necessary to
reference to this Air Vehicle the positions and velocities of those that are visible. The
transformations use the three- and four-dimensional matrix transformation classes of the Java 3D
Package javax.vecmath. Air Vehicle centric information about tasks is updated similarly.
Since madkit.kernel.Watcher is a MadKit agent, so is EnvironmentObserver, which is why it is
called with the TestBedSimulation looping cycle.

4.2.10 TTAS Umpire Component
The Umpire performs several functions. It handles simulation-, group-, and/or role-wide
message broadcasts; it can verify completion of task service and dispense rewards; and it can
enforce the rules-of-the-game. As with the EnvironmentObserver class Umpire is an extension
of the MadKit madkit.kernel.Watcher class and through the registered madkit.kernel.Probe
instances has access to all agents of specified groups and roles. It also is a MadKit agent.

4.2.11 TTAS Data Recorder
The StorageWatcher (the Data Recorder ccomponent), when enabled, writes all messages
exchanged between air vehicles and tasks (if any) in the relational database through the JDBC
connection established at simulation startup. The relational schema into which data is recorded is
created at execution time, which implies that each experimental data set is a separate database
instance. The current implementation (when enabled) records the physical state of each air
vehicle and its local environment at each step. The StorageWatcher is also an extension of the
MadKit madkit.kernel.Watcher class. Redesign underway to record user specified data at
specified time intervals.

We use the Mckoi SQL Database, which is Open Source and implemented in Java. The Mckoi
database can be embedded within TTAS, but TTAS execution is slowed as a single JVM handles
both TTAS and the database. Generally we use Mckoi as a standard (remote) database server
that executes within its own JVM. In this configuration performance is acceptable even when
TTAS and Mckoi are on the same computer. As noted in Section 3.3.2, since all database access
occurs through JDBC, any database can be used with suitable implementations of the TTAS API
(Java Interface) JDBCStorageHandler_I.

 36

4.2.12 Two Dimensional View
The Two Dimension Display provides a downward looking, wizard’s view of the simulation
world. It displays the locations of air vehicles and tasks; can change a task’s color after the task
is serviced; and can display air vehicle and task identification. A coordinate grid is displayed
divided as appropriate to the simulation world size into units of 1, 2, 5, or 10 kilometers. The
display is implemented in Java Swing with Java graphics as an extension to the

madkit.kernel.Watcher class. In general this display is intended for debugging MAS
implementations and experiment configurations. Our plans include extending the Two
Dimensional View to include terrain and other geographic features such as road and buildings.
A screen shot of the current Two Dimensional View is displayed in Fig. 6.

4.2.13 The Three Dimensional View
The Three Dimensional View provides a true three dimensional view of the locale surrounding
the camera position. The camera position can be selected to be the position of a specific task and
can be rotated through all three angles and moved through all three linear dimensions via mouse

Figure 6. TTAS' two-dimensional display

iiroi of Adaptive Hetrogeneoijs i n^'n

l8w TsstBsd

-IDIXI

ABasfc Mr Vehicle 57
AT 8k 22

ATask 61 ^
hk 8 ss

Vehlclesg ;^n^|mk69
ATask36
t

ATask47 AJask 4

A Task 26
t

t AUasicAirvenicieob

ATask 40
t

ATask S

ATask 6E

A Task 35 *

ATask34
«

ATi.?iy^-i"""
ATask^a k73

T
ask43 :Tg ikl7 ATask41

Al%sk20
ATask^1 ATaskie

ATlSSk62

ATa8kg
■

A Task 15
' ATask^^'sk27

ATa8ke7

ATasklB ATa8k|irrask25

A'
t

ATask E

ATas
■

r Vehicle 60

ATatLfj^tf-i£lVGBtcle5B

Ifsitfasli I' Simulation Obaarver

 37

movement. The Three Dimensional View is Implemented in Java 3D as an extension to the
MadKit’s madkit.kernel.Watcher class. Planned extensions include zoom, terrain, geographic
features, and views from a UAV, which will be quite interesting when terrain is included in the
simulation.

4.3 Milestones and Future Directions

4.3.1 Milestones
During this period of performance we developed a working implementation of the Testbed for
Taskable Agent Systems that supports experiments on Multi-Agent Systems of UAVs
collaborating to find and survey ground targets. Different approaches to coordination and
adaptation can be investigated quantitatively by simply replacing the agents that control the
UAVs. Standard experiment configurations are archived in a reusable XML-based configuration
file. Post-experiment analysis is made possible by extensive data recording to a relational
database. A complete set of APIs is provided for air vehicles and tasks. Reference
implementations of these APIs are provided for UAVs and target ground sites.

4.3.2 Future Directions
Complete enhancements necessary to support all OEF design problems, such as moving targets,
unreliable information, cross mission tasking, and time critical targeting. Include terrain and
geographic features and the effects of terrain on line-of-sight sensing and communication. Test
proposed OEF experiment configurations and establish baseline measurements for these
configurations. Test kinematics models for fixed wing UAVs. Use a simulation platform for
Alphatech’s research. Work with TASK PI organizations in order to perform experiments in
TTAS on their approaches to the OEF design problems.

5 Cooperative Learning and Dynamic Control MAS
Research

Our work has been focused on Multi-Agent System (MAS) problems in which each agent is
required to make a series of online decisions based on its belief about the state of its
environment. Each agent is an independent and distributed participant in the MAS, whose
purpose is to maximize the MAS performance through local action. By developing new
technologies for coordination and adaptation within the context of a MAS formulation of a UAV
problem, our work will help facilitate advances in DoD capabilities in surveillance, targeting,
biological/chemical monitoring, and battlefield command and control, just to name a few. These
new capabilities for long-term, autonomous UAV missions will dramatically increase the DoD’s
information superiority, while simultaneously reducing the risk for loss of human life.

 38

As depicted in Figure 7, in our formulation each agent decision results in the execution of an
action, the result being a transition to a new state and a real-value reward reflecting the
immediate value of the new state. We are interested in MAS problems where the agents are

learning about their environment incrementally. We further characterize this as Reinforcement
Learning by limiting the agents to a feedback value that reflects the immediate efficacy of an
action as a function of the state transition that it invokes, but not an omniscient response
indicating the correct action for the current state, as would be the case with a Supervised
Learning approach.

When using Reinforcement Learning for control, the objective is generally to learn a value
function for either states or state-action combinations such that a policy function, π(s), can be
defined in terms of the value function and used to compute the action that the agent will execute
in any state s. From dynamic programming, we know that one general method for optimal policy
computation is as follows:

Where V(s') is the expected value of state s'.
Although there are well-known Reinforcement Learning algorithms that are suitable for many
Markov Decision Processes, learning the value functions can be computationally challenging as
the complexity of the environment grows. By the law of large numbers, Reinforcement Learning
algorithms are proven to converge to optimal policies if they systematically explore the totality
of the state and action space infinitely often. Large state spaces or those with continuous
attributes, as well as large action spaces, can all contribute to the complexity of the environment
and intractability of obtaining good solutions.

Agent

Environment

State Reward Action

Agent

Environment

State Reward Action

AgentAgent

Environment

State Reward Action

Figure 7. Interaction between the agent and its
environment in a Reinforcement Learning context

 39

5.1 Objective
Our research objective has been to allow heterogeneous agents operating as a Multi-Agent
System to each benefit from the collective learning capabilities of the entire group. Specifically,
we would like our agents to be capable of exchanging and exploiting learned knowledge. We
expect to achieve several benefits from knowledge sharing.

• Divide and Conquer - Large, complex state spaces or large action spaces can all cause the
computational demands of the learning problem to explode. Multiple agents each attacking
different parts of the same problem will reduce these demands for individual agents.

• Expanding Capabilities - Intuitively, heterogeneous agents will often have heterogeneous
capabilities, in terms of perception or actions, which correlate to the type or fidelity of the
agent's observations about the environment. An ability to exchange the subsequently derived
knowledge would allow all agents to take advantage of the aggregate of the group's
capabilities.

• Credit Assignment - A problem that frequently complicates reinforcement learning
applications is that of assigning appropriate credit to states or actions for their contribution to
achieving goals. The sequential experiences encountered by an agent make it difficult to
separate the salient interactions from those that are coincidental. The iterative exchange of
learned knowledge may provide each agent with multiple points of reference for determining
true causality.

• Improving Quality - Related to the desire to reduce the computational demand of learning in
large spaces, we would also like to have the agents achieve beneficial performance more
quickly. Allowing agents to benefit from the mistakes of others will reduce the collectively
accumulated penalty for incorrect actions.

5.2 Reinforcement Learning
Reinforcement learning can best be thought of as a classification of a learning problem [3, 8],
rather than a specific solution. Reinforcement learning algorithms iteratively derive a value
function for states or state-action pairs. Any algorithm that accomplishes that goal can be
classified as a reinforcement learning algorithm. Reinforcement learning differs from traditional
supervised machine learning in that there is no omniscient supervisor that provides the agent
with examples of optimal behavior. Instead, the learner relies on iterative rewards that indicate
the efficacy of an action or sequence of actions in terms of the value of the states to which the
agent is transitioned. It also differs from unsupervised learning in that there is some external
feedback with which the learner can measure its efficacy, where unsupervised learners rely on
self-assessment to measure their progress.

Exploitation vs. exploration is an important consideration in the formulation of a Reinforcement
Learning solution. To learn the value of states and actions, an agent must explore its range of
actions over the range of the state space. To accomplish this, the agent must at times act against
what it believes is the best course of action. The agent must eventually arrive at some synergy

 40

between exploration and exploitation to act successfully in the environment. The intractability of
exploring large environments is a key motivation for this work.

SARSA(λ)

The SARSA(λ) algorithm [8] serves as the model-free Reinforcement Learning algorithm for our
initial research. The SARSA algorithm derives its name from the quintuple {st, at, rt+1, st+1, at+1}
(state-action-reward-state-action). SARSA is considered an on-policy control algorithm, since
the policy that's being continuously updated is simultaneously used for control. The algorithm is
model-free since it operates with no model of the environment dynamics. The use of an
eligibility trace e(s, a), to propagate a portion of the reward back through the sequence of state-
action pairs that allowed the agent to arrive at the reward state is particularly effective in

speeding up the convergence of the SARSA(λ) algorithm.

5.2.1 Cooperative Learning
The algorithm in Figure 8 is the tabular form of SARSA(λ), meaning that it is suitable for
discrete state spaces where each state variable takes on a relatively small number of values, such
that Q(s,a) can be fully enumerated in matrix form. The set of states, S, and actions, A, are
developed in accordance with classic Markov Decision Process formulations, discussed in a wide
array of literature, and only affect the SARSA(λ) algorithm and our proposed work to the degree
that they impact the scalability of the algorithm itself.

Although the primary focus of this work is to incrementally assess the quality of an agent's
evolving knowledge, it should also be noted that under some circumstances knowledge
representation would play a key role in knowledge sharing. Part of our research objective can be

Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s, a
Repeat (for each episode):
Initialize s, a
Repeat (for each step of episode)
 Take action a, observe r, s’
 Choose a’ from s’ using policy derived from Q
),()','(asQasQγrδ −+←
 1+←),(),(asease
 For all s,a:
),(),(),(aseαδasQasQ +←
),(),(aseγλase ←
 ';' aass ←←
until s is terminal

Figure 8. Tabular SARSA(λ) online learning and control algorithm

 41

viewed as an attempt to develop a method by which agents can parallelize the process of learning
about the environment. Like most efforts to parallelize algorithms, the challenging aspect is the
reintegration of the n partial solutions. Some heterogeneous agent systems will inevitably have
varied sub-goals, unique value/cost functions, and different perception and action capabilities.
Clearly these attributes will all affect the internal knowledge representation of the agent, causing
the knowledge held to be situational, severely complicating any exchange and integration of
knowledge. Therefore a generalization mechanism must be employed for agents operating under
these circumstances. Relevant work has been accomplished in agent communication languages
and knowledge interchange formats, but substantial challenges remain with regard to the impact
of learning and local valuation in heterogeneous agent systems. In addition to this challenge, the
fact that an agent will now have multiple perspectives on which to base decisions introduces a
totally new quantity of information. There is significant research to be done to address the
meaning that can be derived from the comparison of multiple models learned in the same
environment and to define a suitable set of actions that the agent can use to exploit this
information. Actions may include the ability to exchange deeper information to elucidate the
motivation for a learned function or to further constrain or expand exploration processes.

5.3 Quality of Knowledge
One of the first questions we think about in terms of agents exchanging their learned functions is,
should agents exchange all information or just good information and how do we measure
goodness? In our context, good information is a Q-function value in which the agent has a high
degree of confidence, where the measure of confidence reflects the convergence of the estimated
value to the true value. The SARSA(λ) algorithm is a process used to repeatedly refine an
estimate of the value of executing a specific action in a specific state. So at any given time, we'd
like our agent to be able to determine how confident it is that the estimated value is close to the
actual value.

Our approach is to incrementally apply statistical confidence interval measurements to this
problem, which are widely addressed in inferential statistics literature. The general idea behind
our approach is that the learned Q-values for state-action pairs, Q(s,a), will be relatively volatile
while the values are still in the process of converging to their true values under the current
policy. By establishing a threshold within which we determine the true value must lie with
respect to the running estimate and establishing a confidence measure with which we require the
measurement to adhere, we can evaluate the agent's belief about the quality of its learned
knowledge. It is important to note that the quality value we are measuring is the stability of a
learned value under a given policy, π. This has implications with respect to changing policies
during the course of learning, generally done to reduce exploration in favor of exploitation. We
will discuss these implications in the following sections.

5.3.1 Quality Measurement
In this section we discuss our quality measurement approach in detail. We assume the reader's
familiarity with basic statistical measures, such as the mean and standard deviation.

 42

To calculate the confidence metric, we'll need to derive a few statistical measures of the Q-
function distribution, the first being the standard error [2, 5], defined in Equation 2:

Where θ is the parameter being estimated, σ is the standard deviation of the sampled parameter
values, and n is the sample size. The standard deviation can be computed using Equation 3.

Where ∑ 2x is the sum of the squared individual deviations, n is the sample size, and σ2 is the
variance. Formally, we are estimating the standard deviation so the use of σ, which typically
refers to the true value, is incorrect. Henceforth all references to the standard deviation are
references to the estimated value, which will be represented by S.

This method of computing the standard error isn't suitable for our approach because our agents
are collecting samples sequentially, whereas Equation 3 is meant to be applied to a static sample
set. Saving all data points to recompute the standard deviation isn't computationally feasible,
however Equation 4 can be used to incrementally compute a running average for any parameter
θ. Since the standard deviation is an average of individual deviations, Equation 4 can be readily
used for our purposes.

Where θ is the parameter for which the average is being calculated, θt is the observed value of
the parameter at time t, and F(θ)t is the computed average of θ at time t. Equation 4 assumes that
one observation of θ is received at each timestep t.

Normally one computes the standard deviation by averaging the distance between each sample
point and the Central Tendency, with the mean being the most common measure of Central
Tendency. In our case, since we are applying these calculations to the SARSA(λ) algorithm, the
work of estimating the Central Tendency of each Q(s,a) is being done for us by the algorithm.
Therefore, we can use the current estimate, Qn(s',a') as the measure of Central Tendency, where n
is the nth time action a' has been executed in state s'. Equation 5 illustrates the application of
Equation 4 to the SARSA(λ) parameters.

Where)'a,'s(S n
2 is the variance of Qn(s',a') after the nth time action a' has been executed in state

s'.

 43

Using Equation 5, we are able to fold the deviation of the current value, Qn+1(s',a'), into the
running standard deviation.

Although Equation 5 provides us with an efficient means of calculating the standard deviation
and therefore the standard error, it may be desirable to attenuate the affect of older data points on
the running calculation of the standard deviation, since the learned values, Qt, should generally
be getting closer to the true values, Q*.

To do this, we would normally compute a moving average over a sliding window of the past m
data points, where m ⊥ n. However, the incremental approach illustrated in Equation 5 does not
lend itself to a sliding window implementation because there is no way to extract the influence of
historical data from the running statistic. Storing the past m data points and recomputing the
measurement is also an unappealing option for obvious reasons. An alternative is to use
exponential smoothing, illustrated in Equation 6, to compute the running average.

Where ω is a weight parameter between [0,1] that controls the emphasis on old versus new data
points, θ is the parameter for which the average is being calculated, θt is the observed value of
the parameter at time t, and Ft(θ) is the computed average of θ at time t.

Exponential smoothing is a process used in time-series analysis to incrementally compute a
weighted average, with the influence of older data points on the mean being attenuated
exponentially. The expanded form in Equation 7 depicts this point.

Where θt is the observed value of the parameter θ at time t, and Ft(θ) is the computed average of
θ at time t.

In time-series analysis, exponential smoothing is typically used for prediction. Although we
would not use it for that purpose, using it to maintain the standard deviation may cause the
standard error to more accurately represent the agent's current knowledge. Although our
preliminary experiments with the exponential smoothing technique showing promising results,
we have not yet validated the applicability of the method. Exponential smoothing is meant to be
applied only when the sample data points are independent, which in a practical sense means that
each point conveys an equal amount of information to the estimation process. It is not clear that
this is the case during the volatile stages of the learning process. Our future work will address
this in more detail.

Equation 8 illustrates our adaptation of the exponential smoothing function to incrementally
compute the standard deviation of the Q-function estimate.

 44

Now that we have a means by which we can incrementally compute the standard error, we're left
with the question of how to assess the agent's confidence in its current estimate of Qn(s',a').
More specifically, we want to answer the question, “are we φ% confident that the true value
under the current policy, Q*(s'a'), is within some acceptable range, ∆, of the current estimate,
Qn(s',a')?'' To answer this question we can compute a confidence interval using the statistics
we've derived thus far. More precisely, we will determine how low the standard error must be in
order for the agent to be φ% confident that the estimate falls within the required range.

For illustrative purposes, we will arbitrarily say that the agent must be 95% confident that the
estimate is within Qn(s',a')±∆, which we refer to as a 100(1-α)% confidence interval, where
α=.05. This is illustrated in Equation 9.

The 95% confidence interval is a commonly adopted threshold in statistical applications,
although any threshold can be computed with the same process.

Since both the central tendency, Qn and the standard deviation, S, are estimates, we will use the
T-distribution to compute the confidence interval [5] on Q*.

Equation 10 represents the density interval of interest and is plotted in Figure 9.

 45

Since our real goal is to determine a bound on the standard error of Qn(s',a'), from Equations 9
and 13:

We can now see from Equation 14 that we have a bound on the standard error that provides us
with 95% confidence that Q*(s',a') is within ∆ of our estimate, Qn(s',a'). The general form for
any 100(1-α)% confidence interval is illustrated in Equation 16:

The tα/2 term is obtained from the T-distribution table based on the confidence required by the
human designer and the degrees of freedom γ, where γ = (n-1), n being the number of data points
over which the interval is computed. For reasonably large sample sizes (>120) we can simple
use the standard normal values. The ∆ parameter can be provided as a constant value or
calculated as a specified ratio to the Qn(s',a') estimate itself. We will empirically evaluate these
options as our research proceeds.

Figure 9. As the degrees of freedom approach infinity, the T distribution converges to the Standard
Normal curve.

 46

5.3.2 Experiment
We used a 100-cell grid as the environment for this work, illustrated in Figure 11. The agent is

1) Initialize Q(s,a) & σ(s,a) arbitrarily and e(s,a)=0, η(s,a)=0 for all s, a *
2) Repeat (for each episode):
3) Initialize s, a
4) Repeat (for each step of episode)
5) Take action a, observe r, s’
6) Choose a’ from s’ using policy derived from Q (e.g. ε-greedy)
7)),()','(asQasQγrδ −+←
8) 1+←),(),(asease
9) For all s,a:
10) β ← Q(s,a) *
11)),(),(),(aseαδasQasQ +←
12) If (e(s,a) > 0 *
13) η(s,a) ← η(s,a) + 1 *
14))]'a,'s(S))'a,'s(Q)'a,'s(Q[(

n
)'a,'s(SS nnnnn

22
1

2
1 1

1
−−

+
+← ++

 *

15))]'a,'s(S)[()]'a,'s(Q[)'a,'s(S n
22

1 1 ωβω −+−←+ *

16)),(),(aseγλase ←
17) ';' aass ←←
18) until s is terminal

Figure 10. Cooperative SARSA(λ) online learning and control algorithm

 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

start

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 7,10

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9 8,10

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9 9,10

100

10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 10,10

10

Figure 11. Experiments were
conducted on a 10X10 grid
environment with two terminal
states, with values 10 and 100
respectively

 47

using our modified SARSA(λ) algorithm (illustrated in Figure 10) with an ε-greedy policy. We
attenuate ε according to the schedule illustrated in Figure 12.b.

5.3.3 Preliminary Analysis
Figure 13 illustrates the progression of the confidence metric for the best (most valuable) action
in each state over the course of the episodic experiments. Areas represented in white are those
for which the agent's computed standard error falls beneath the required threshold, indicating a
strong degree of certainty about the stability of the value. Areas in black represent the values
that fall above the required threshold. The first attribute to note is the anomaly that occurs in the
graphic for the 100th episode. The agent appears to be confident in the values for the state-
actions in the lower left corner, which occur in close proximity to the start state (1,1). In reality,

at the 100th episode those values are still far from the true value associated with the optimal
policy. This anomaly occurs due to the nature of reinforcement learning, since the values for
state-actions that are far from the reward states receive very little propagated reward during the
early stages of learning.

This problem is further exacerbated by the fact that our experiment has a consistent start state for
each episode, meaning that the states and actions in the lower left quadrant are visited with a
high frequency. These two situations combined fool the agent into believing that the values for
these state-action pairs are stable. We have begun to experiment with potential remedies as our
research continues. What begins to emerge in the subsequent measurements is a band of
certainty around the optimal policy. Terminal states are denoted as uncertain because no actions
are executed within them and consequently no measurements are made. Areas denoted as
uncertain remain so because the agent does not visit these states often enough to acquire enough
stable data for the standard error to fall below the threshold. It is unclear at this point of our
analysis whether the Q-values fail to converge or the agent just doesn't experience the state-

Reward

Steps

Episode # Episode #

(a) (b)

Figure 12. (a) Convergence of reward and # of steps executed by agent. (b) Attenuation of ε
value.

 48

actions for a long enough period of time after convergence. The agent's ability to measure a
stable value lags behind the actual appearance of the stable value because the agent needs to see
a sufficiently long sequence of values to compute the measurement.

Figure 14 illustrates further measures for sub-optimal actions, indicating a relatively large set of
information for which the agent has achieved a desired level of certainty.

certain

uncertain

300th episode 400th episode 500th episode

600th episode 700th episode 800th episode

100th episode 200th episode

Figure 13. Certainty measurements for optimal actions, at 100-
episode sampling increments

North at 800th episode

certain

uncertain

South at 800th episode

On policy at 800th

episode

East at 800th episode West at 800th episode

North at 800th episode

certain

uncertain

South at 800th episode

On policy at 800th

episode

East at 800th episode West at 800th episode

Figure 14. Measures for all actions at 800th episode.

 49

5.4 Continuing Research and Future Direction
Now that we have developed a theoretical premise for measuring the quality of an agent’s
knowledge, we have begun to develop a full-scale control algorithm for individual agents and a
means by which this algorithm can incorporate notions of multi-agency and the added dynamics
inherent in a Multi-Agent System. The initial objective is to develop a Partially Observable
Markov Decision Problem (PO-MDP) [1, 7] formulation, which will allow agents to minimally
interact with peer agents and coherently execute search and surveillance actions.

Since our work is predicated on the notion that agents are making sequential decisions, it is
important to formally describe this problem family and discuss how our research will contribute
to current methods.

5.4.1 Sequential Decision Problems
Sequential decision problems are generally discussed in the context of two discriminating
features. The first is the Markov property, which requires that the agent's percept provide
enough information to identify the current state of its environment at each decision point. The
second is the accessibility of the environment, which describes the degree to which the agent can
directly observe the true state of its environment. A fully accessible environment is one in which
the agent's percepts are direct observations of the full set of state variables. Markov Decision
Problems are those that obey the Markov property in fully accessible environments. Formally,
an MDP can be specified as a 4-tuple {S,A,T,R}, where:

• S is a finite set of environment states

• A is a finite set of actions available to the agent

• R is a reward function that maps from the states S to real-valued rewards R:SXA→ℜ

• T is a transition function that maps T:SXA→Θ(S), where Θ(S) is the state transition
function specifying a discrete probability distribution a

'ssP , which is the probability that
the agent executing action a in state s will transition to state s’ for all a∈A and all s,s’∈S

More generally, we refer to a kth-order MDP, where the agent must consider the last k states
visited to compute the transition probabilities as P(Sn=sn |.an-1,Sn-1,…,Sn-k). By allowing k →∝,
any fully accessible sequential decision problem can be formally represented as an MDP,
although it would not always be practical to solve it as such. The definition above refers to a 1st-
order MDP.

Unfortunately, like the TASK family of problems, many realistic problem environments are not
accessible [4, 6] and therefore policies cannot directly be derived using standard MDP methods.
These problems are instead considered Partially Observable Markov Decision Processes
(POMDP), a sequential decision problem in which the agent must select actions without certain
knowledge of the current state of the environment (inaccessible). The general solution approach
for a POMDP is to compute a probability distribution over the possible states at each timestep
and treat the problem as an MDP [1, 6], using the distribution as the state signal. Formally, a
POMDP can be represented as a 6-tuple {S,A,T,R,O,B} where:

 50

• S, A, T, and R are defined as they are for the MDP

• is a finite set of observations that the agent receives at each timestep in place of the true
state signal

• B is a belief model that maps B:SXA→Θ(O), where a
soBρ is the probability of observing o

ρ
in state s after the agent has executed action a.

The agent would then use the probability distribution across states to make a decision about
which action to execute.

5.4.2 Problem Parameters
We will abstract away much of the MAS complexity for the initial problem formulation,
allowing us to test initial concepts and put a mechanism in place on which we can build more
complex approaches to more complex problems.

We would like our agent controller to eventually be capable of dealing with a problem like the
following:

An agent possesses information about 8 tasks of the agent’s type, 3 known, varied-value tasks that are
distributed geographically and 5 unknown tasks, each with different ages (quality) associated with the
knowledge, and 3 agents within detection (but not communication) range, and 1 agent within
communication range. At the agent’s disposal is a set of actions that will allow it to act on its current
knowledge or seek out additional knowledge. The agent can attempt to service the known tasks, to
communicate with known peers, or explore the environment for new tasks or peers. What should the
agent do?

The primary question is, under what set of circumstances is each action a provably good choice?

This problem is described from the perspective of the agent’s knowledge. Notice that there are a
few salient pieces of information missing that make this problem very difficult, namely the true
location, type, and value of all unserviced tasks, the locations and types of all agents, and the
intentions of all agents. And of course one final complicating detail is that all of this information
changes at each time step because of the unobservable randomness associated with the actions of
other agents and the evolving system dynamics. Addressing this problem in its full complexity is
a goal toward which we will work, but not the starting point.

We’re starting our work from the basic formulation of a Partially Observable Markov Decision
Process (PO-MDP). Solving a PO-MDP means providing the agent with a means for selecting a
good action at each decision point, based on the cost of that action in a particular state20. Since a
PO-MDP assumes the true state is unavailable, the agent will make the calculation based on a
probability distribution over states. We compute this probability distribution based on a model
of state transitions and an estimation function that probabilistically maps observed evidence to
states. The cost is then computed via a function that yields the cost of actions based on the

20 This isn’t to imply that the policy involves only a 1-step measurement of value/cost. The true policy may rely on
a cost function that includes a notion of looking ahead across some finite horizon of transitions reachable from the
current state, complicating the cost calculation. Recursive definitions of cost/value might incorporate this notion

 51

probability distribution over the current state and the probability of the states to which the agent
could transition. These elements are detailed further in subsequent sections.

In our initial problem formulation, the general goal of any agent is to accumulate the most
reward for servicing tasks. There are numerous circumstances one could create under which
complex strategies, such as short-term sacrifices for long-term benefit or sacrifices for the benefit
of others, could be motivated. This is not the focus of our initial work. At the heart of our
problem is the notion of the uncertainty of information obtained through communication with

peer agents or from the age of globally broadcasted knowledge. Risk is associated with the age
of information in the form of the cost of servicing a task. Cost may simply be a function of time,
in that there is a fixed penalty associated with each time step that can only be offset by
accumulating reward from servicing tasks. Time misspent pursuing tasks that no longer need
servicing is an example of the cost associated with the risk of uncertain information. Assuming
the agents travel at a finite speed and all task values and information ages being equal, closer
tasks are more desirable. Since all task values and information ages are not equal, the agent then
must estimate the utility of attempting to service a task, based on a belief that the task remains
unserviced and the anticipated value of servicing the task. Alternate actions, such as searching
or communicating, may be more beneficial, depending on the circumstances.

known
task

unknown
task

Figure 15. Agents navigating through a physical space with
known and unknown tasks. Agents have distinct task
surveillance, task detection, agent communication, and agent
detection ranges, respectively illustrated by the four rings
surrounding the agent, starting from the innermost ring

 52

Figure 15 illustrates the basic problem setup. Agents are navigating through the environment,
searching for tasks and attempting to survey them if found. Searching for a task only identifies
the existence of a generic task within a field of view (FOV). The surveillance detector
subsequently receives type, value, and location information. Agents also encounter their peers,
with whom they can then exchange collected observations. The environment is comprised of a
set of tasks that are known and unknown, of which the definitions are still somewhat flexible.
For now, we assume that when the experiment starts, agents are provided with the locations,
types, and values of all known tasks but only the types of all unknown tasks. Tasks that are
serviced are replaced at a constant rate and information about those tasks is centrally broadcast to
all agents, either the full location, type, and value for known tasks or just the type for unknown
tasks. Serviced tasks remain detectable until they are replaced. The agent receives no value for
surveying a task that has already been serviced.

Despite the global broadcast of data, this information is still uncertain due to the limited
observational perspective of the agent, combined with the presence of other agents in the
environment. Once the task has appeared in the environment, regardless of a known or unknown
location, the agent does not know the task’s fate until it either confirms for itself or is told by
another agent that it has been serviced. In other words, pursuing a known task is not a sure thing.

5.4.3 PO-MDP Controller Formulation
State Transition Model – Using control theory terminology, the state of the system at time k+1,
xk+1, is determined by the function fk(xk,uk,wk), where uk is the control executed by the agent in
the previous time period and wk represents a random system disturbance with a known
probability distribution. One might assume that in the TASK setting, the random disturbance
would be characterized by the randomness attributed to the actions of other agents and the
addition of tasks to the environment by the central supervisor. We will need to empirically
determine the state transition model, P(xk+1 | xk,uk,wk), which will provide the agent with the
distribution over the outcomes of the function fk.

Estimation Function – Again, in control theory terminology, the evidence observations are
denoted at time k by zk, determined by the function hk(xk,uk-1,vk), where xk is the current state, uk-

1 is the previous control, and vk a random observation disturbance. We will need to empirically
determine the probability distribution for the set of possible observations, given by P(zk | xk,uk-

1,vk), which will provide an essential component necessary for the agent to compute the
probability distribution over states. Note, this does not take into account other mechanisms, like
recursive estimation. Many different possibilities abound.

Cost Function – Lastly, a cost function uses the computed distribution over states, with known
costs of state transitions, to compute expected costs for each possible control.
 Henceforth the probability distribution over true states will be referred to as the belief state. We
are not currently addressing online adaptation of model or policy parameters and we will assume
for now that our policy function is a relatively simple function of cost.

Figure 16 illustrates a basic formulation for the TASK agent as a PO-MDP controller. The
subscript k represents the current time step. The following is a set of term definitions:

xk – the true state of the system at the current time step,
uk – control executed by agent,

zk - set of current observations available to the agent,
Ik - the total set of information used for computing belief state, including current and
historical observations and previous actions,
S(Ik) – a sufficient statistic representing the minimum information from Ik needed to compute
the belief state,
Bk - the agent’s estimated probability distribution over the set of true states (belief state),

53

 54

g – a cost function yielding the cost of each action in each state,
µ - a policy function that selects the next action based on the belief state and the cost function

System States

As part of our PO-MDP formulation, we must define the set of states that the system can assume
and the possible transitions between those states. Figure 17 illustrates our initial approach to the

system states. This delineation is based on the notion that an agent is only interested in things
that are happening within a finite Area of Interest (AOI), which is much smaller than the entirety
of the physical space within which the experiment takes place. So, the states denoted in Figure
17 indicate the true density of tasks within the area of interest. The system can clearly transition
between any two states, based on the influence of other agents in the environment or the addition
of tasks by the simulator.

The agent will use its sensors and interaction with peer agents to collect observations, with which
it can probabilistically compute the likelihood that the system is in any particular state, and then
select an appropriate action.

5.4.4 Observations
First, it is important to note that in our problem formulation there is a difference between the
large set of information that the agent acquires and stores and the smaller set of information the
agent considers as observations in the control theory sense of the word. The agent maintains
information about every cell in the environment, illustrated in Figure 18. This is the information
as it was collected by or reported to the agent, but may not be accurate due to the passage of
time. The agent uses the information from the area of interest for its own decision-making, but
shares all information with peers. A set of information is then filtered from the total map into a
set of observables relevant to the agent’s area of interest, with which the agent then computes its
belief state.

No Tasks

1
Few

Unserviced
Tasks

2 3 4

5
Many

Unserviced
Tasks

0

Figure 17. State transitions reflecting discrimination on the task density within the
agent’s area of interest

 55

}]s,t ,v ,{p},...,s,t ,v ,{p},s,t ,v ,[{pT nnnn222111 21=

}]s ,{p},...,s ,{p},s ,[{pT nn21 21=

Table 3 lists the source and format of the information the agent may receive over its lifetime.
From this a set of observables will be distilled for the computation at each agent decision point.

Source Description Representation Notes

Known Tasks

Simulator

Unknown Tasks
Maybe just the number of unknown tasks at system start
and incremental updates to indicate the addition of a new
unknown task

Where pi is the task’s location
coordinate in Cartesian space, vi is
the value of the task, ti is the type
of the task drawn from the set of
types ti ∈ {0,1}, and si is the time
step at which the information was
originally acquired from central
broadcast.

Search
Detector Unknown Tasks

 Where pi is the location coordinate
in Cartesian space representing the
center of the circle within which
the task resides and si is the time

Task ID
Type: 0
Value: 10
location: (x,y)
timestamp: t

Type: 1
location: (x,y)
timestamp: t

Figure 18. Agents maintain information about the entire environment, but limit
decision making to include information about a limited area of interest

Table 3. Source and content of all raw information, from which the agent constructs a set of observations.

 56

}]s,t ,v ,{p},...,s,t ,v ,{p},s,t ,v ,[{pT nnnn222111 21=

step at which the task was detected.

Surveillance
Detector

Known/unknown
Tasks

 Where pi is the task’s location
coordinate in Cartesian space, vi is
the value of the task, ti is the type
of the task drawn from the set of
types ti ∈ {0,1}, and si is the time
step at which the task was detected.

Peer Agents Known/unknown
Tasks

 Where pi is the task’s location
coordinate in Cartesian space, vi is
the value21 of the task, ti is the type
of the task drawn from the set of
types ti ∈ {0,1}, and si is the time
step at which the information was
originally acquired by the first
agent.

Agent
Detector Peer Agents

Where pi is the agent’s location
coordinate in Cartesian space and ti
is the type of the agent drawn from
the set of types ti ∈ {0,1}.

Computing the Belief State:

Part of our research work is to devise a method by which the agent can use observed information
to compute a belief state (Bk), which is a probability distribution over the set of possible states.
The following is a discussion of our initial approach to computing the belief state. We introduce
the parameters of the function, but the actual function will be determined through empirical
analysis.

Assumptions:

1) All tasks are the same value

2) The total number of tasks is known

3) The distribution of task types is known (e.g. 20% type A, 30% type B, etc)

4) The total number of agents is known

5) The distribution of agent types is known

The agent should use its observations to compute its belief about the density of tasks within the
area of interest. The function, h, which the agent uses to compute the probability over states,
should include the following as parameters:

Bk = h({(t1,s1),(t2,s2),…,(tn,sn)}, k(x), u(y), a(z)) –

21 Receiving a task value of zero from a peer agent indicates the task has already been serviced

}]s,t ,v ,{p},...,s,t ,v ,{p},s,t ,v ,[{pT nnnn222111 21=

}]t ,{p},...,t ,{p},t ,[{pA nn2211=

 57

− The set of known (from simulator and peers) tasks in the AOI, represented as pairs of
task IDs (ti) and time stamps (si)

− a(z), the number of agents in the area of interest, with the parameter z being the total
number of agents in the environment. Initially, we might be able to achieve this by
assuming a uniform distribution of agents (pursuing uniformly distributed tasks) and
then just calculating the number of agents expected to be in the physical space of the
AOI. More advanced methods might include using observed or reported information
about agents and trajectories.

− u(y), the number of unknown tasks expected to be in the AOI. Again, we can
probably use the expected value, given the uniform distribution and number of
unknown tasks believed to be remaining.

− k(x), the number of known tasks expected to be in the AOI. Again, we can probably
use the expected value, given the uniform distribution and number of known tasks
believed to be remaining.

Example:

1) The decision-making agent is of type A

2) Total type A tasks: 50; 45 known, 5 unknown;

3) Number of other type A agents: 10

4) Proportionate size of AOI: 20%

5) 9 type A known tasks were originally reported in the AOI (following the uniform
distribution), 2 have since been reported as serviced, leaving 7 for which no new
information has been received:

6) Since we have a total of 5 unknown tasks and our AOI is 20% of the total physical space,
we expect to find 1 unknown task within the AOI.

7) So we start the calculation with the notion of 8 potential tasks in the AOI. We’re then
left to determine the impact of the age of the information about each task and the density
of type A agents.

With this information we compute a distribution over the states listed above.

5.4.5 Actions
The following actions are available to the agent at each decision step:

Wide Area Search (WAS) –WAS causes the agent to execute a search pattern over a large area of
the physical space while applying the Search Detector.

 58

Fine-Grained Search (FGS) –FGS causes the agent to execute a search pattern over a smaller
area of the physical space while applying the Search Detector. This small area may be centered
around the known location of a task or the center of the area in which a task has been detected.

Service (SVC) – SVC causes the agent to apply the Surveillance Detector over a small area of the
physical space in which a task has been detected.

Communicate(ai) –Communication is reciprocal, so an agent both sends and receives
information. All information is exchanged, more than just the set of observables for the AOI.

Move(p) – Moves the agent to point p in the physical space. The point is 2D (Cartesian) in our
current configuration.

5.4.6 Policy
Typically, the policy is just a mathematical function of utility of a state and the probability that
an action will transition the agent to that state, look-aheads, etc not withstanding. We assume the
probability distribution is handled by the estimator, so the explicit difficulty here is the utility
function, otherwise known as the cost function. The nature and effect of agent interaction may
make the cost function difficult to capture empirically.

Interaction between agents in a Multi-Agent System typically has an explicit connotation, such
as negotiating joint actions or directly observing and reasoning about another agent in order to
select complimentary actions. Our initial problem formulation is scoped to include only
exchange of observation information (e.g. task locations/values/types), with the possible
exception of explicitly considering histories of other agents to appropriately weigh search
strategies or to weigh the value of communication with a particular agent.

A significant question is then how to represent the expected value/cost of exchanging
information and how to represent the resultant state transition. Communicating information does
not change the external state of the environment, but rather changes the agent’s state of
knowledge. Aside from the question of how this is modeled, how is this transition valued? Is
the measure quantitative, in terms of the amount of information received or is it qualitative, in
terms of the impact on the agent’s ability to make good decisions and reap the subsequent
reward? Are there implicit costs associated with communicating, such as the delay in direct
action? E.g. time spent communicating is time not spent searching or servicing. Is there a way
of measuring the cost associated with poor action choices based on bad (old) information,
received from another agent? Or, can all of this be avoided by simply making search and
communication default actions, chosen uniformly when no task is available to attempt to service?
These are questions we will endeavor to answer as our research progresses.

5.5 Conclusions and Continuing Research
We have successfully conducted research to develop statistical methods by which agents
operating in a Multi-Agent System can efficiently share knowledge. Our current work is
designed to provide control logic and supporting knowledge structures for single agents

 59

operating in cooperative Multi-Agent Systems, within which we can further explore the value of
cooperative learning and knowledge sharing.

To facilitate this formulation of a PO-MDP controller, we will conduct experiments to develop
the correct level of granularity for representations of system state and agent observations, which
will allow agents to tractably compute probabilistic beliefs about the conditions of the dynamic
environment. Once we have developed an appropriate agent mechanism for assessing the state
of the environment, we will turn our attention to the design of policy functions, which include
methods for determining the cost and efficacy of agent actions. Combining the state models with
the policy functions will provide the agent with a mathematical mechanism for decision-making
in the uncertain Multi-Agent System environment.

Our near-term work will be focused on completing these objectives and conducting initial
experiments to determine the applicability of a PO-MDP agent controller within a Multi-Agent
System environment. We expect our initial design to undergo iterative refinement during this
process. Once we have arrived at a stable design for the agent controller we can then design and
evaluate our formal methods for cooperative learning and knowledge sharing.

6 Project Conclusions and Continuing Work

6.1 Open Experimentation Framework
ALPHATECH has accomplished the following major OEF milestones:

• Successfully defined a MAS UAV problem, administered the CAHDE REF, and
coordinated the participation and research of multiple TASK project PIs.

• Identified and refined seven major critical elements for MAS research and evaluation and
defined their dimensions

• Developed detailed OEF problem specifications and metrics for Adaptation and
Coordination critical elements, which will provide PI researchers with a common
framework for evaluating their solutions

• Defined and specified baseline parameters for the UAV-S(1) surveillance problem, which
includes the configurable dimensions of the UAV problem and measurement criteria.
This provides a common environment for PI research and evaluation.

• Engaged all project PIs on OEF definition, problem specification, and integration of their
research

ALPHATECH’s future OEF work will entail the following:
• Continue specifying the OEF in terms of the major MAS design critical elements so that

MAS design dimensions are well understood and measurement criteria can be developed
• Fully define the UAV-S(2)-(5) problems to facilitate research along new dimensions and

additional levels of problem complexity

 60

• Supporting the PIs to integrate their research into the OEF so that a common evaluation
framework can be developed

• Supporting the DARPA Program Manager with reports and status
• Continue to develop and maintain the problem generator to support the UAV problem

specifications

6.2 Testbed for Taskable Agent Systems
ALPHATECH has accomplished the following major testbed milestones.:

• Developed a multi-threaded software system capable of supporting:
− Well defined APIs supporting multiple interactive agents with different underlying

implementations so that disparate agent technologies can be evaluated within the
same framework

− Fully 3-dimensional environment to support realistic problem formulations
− Six degrees of freedom for UAV motion to support more complex and realistic agent

decisions
− Relational database for extensive experiment data logging to support experiment

analysis
− XML configuration file to adjust the many system parameters and to support

repeatable experiments
ALPHATECH’s future testbed work will be focused on adding the following features:

• Support for moving targets
• Providing facilities for unreliable information to support research addressing uncertainty

and trust
• Supporting cross mission tasking scenarios to support research requiring agents to

negotiate joint actions
• Adding time critical targeting to support research approaches that can deal with

computational bounds on decision algorithms
• Including terrain and geographic features and the effects of terrain on line-of-sight

sensing and communication

6.3 Multi-Agent System Research
ALPHATECH has accomplished the following major research milestones.

• Conducted extensive research efforts focused on the development of new mechanisms for
coordination and interaction of agents operating in a Multi-Agent System.

• Developed a mechanism for measuring quality of knowledge learned through
Reinforcement Learning so that agents can decide what warrants knowledge exchange

• Conducted experiments to evaluate quality measurement methodology

 61

• Began development of a Partially Observable Markov Decision Process framework for an
agent controller capable of operating within a multi-agent system environment. Will
support agent decision-making and actions and provide a foundation for cooperative
learning research

ALPHATECH’s future research work will be focused on:

• Completing the design of the PO-MDP agent controller so that the environment states
and agent observations are fully specified and mathematically consistent. This provides
the foundation for reasoning and action.

• Implementing the agent controller within the TTAS to conduct robust UAV experiments
with baseline UAV-S(1) problem

• Conducting further experimentation and research with our cooperative learning
algorithms to allow agents to exchange and benefit from the learned knowledge of other
peer agents, dramatically reducing the computational complexity of the online learning
problem and increasing the efficacy of the agents

 62

7 References
1 Bertsekas, D. P. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,

MA, 2000.

2 Bury, K. Statistical Distributions in Engineering. Cambridge University Press,
Cambridge, UK, 1999.

3 Kaebling, L.P., Littman, M.L., and Moore, A.W. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237--285, 1996

4 Littman, M. L., Cassandra A. R., Kaelbling, L. P. Learning policies for partially observable
environments: Scaling up. Proceedings of the Twelfth International Conference on
Machine Learning, Morgan Kaufmann publishers Inc.: San Mateo, CA, 1995.

5 Milton, J. S. and Arnold, J. C. Introduction to Probability and Statistics: Principles and
Applications for Engineering and the Computing Sciences. McGraw-Hill, New York, NY,
1990.

6 Parr, R. and Russell, S. Approximating Optimal Policies for Partially Observable
Stochastic Domains. In Proc. Fourteenth International Joint Conference on Artificial
Intelligence, Montreal, Canada, 1995.

7 Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Englewood Cliffs,
NJ: Prentice Hall Inc, 1995.

8 Sutton, R. S. and Barto, A. G. Reinforcement Learning. An Introduction. Cambridge, MA:
MIT Press, 1998

